Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 347: 119229, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37820514

ABSTRACT

The energy required for various processes in the water cycle can have significant economic and environmental impacts. Therefore, efficient energy management in urban water supply systems is crucial for a sustainable operation. By installing energy recovery technologies in these facilities, it is possible to reap the benefits of the infrastructure design by saving energy. In this study, a new methodology to assess the energy recovery at the inlets of district metered areas is presented, considering the city of Murcia (Spain) as case study. This methodology is based on creating a detailed model of city water supply system and calibrating such model with an experimental campaign of measurements. Then, the assessment of the hydraulic potential recovery is analysed through two different energy estimators, one considering the minimum available net head and the other assuming a variable net head. Results show that there are several points where turbines could be installed, most of them recovering in between 1000-5000 kWh, which could be used to cover the yearly energy consumption of about 24-120 m2 of a school or 10-50 traffic lights of such area. Moreover, in some points it could be recovered up to 14500 kWh. Even though these values are not high, the energy recovered could be used for self-consumption of nearby electrical loads, at the time that reduces the pressure in the system, thus leading to leak reductions. Moreover, this kind of energy recovery does not reduce the potential of other proposals for upstream energy recovery, such as replacing pressure reduction valves with turbines instead. The scripts developed to apply the proposed methodology are available in EPANET-Octave file exchange for the researcher community.


Subject(s)
Water Purification , Water , Bays , Water Supply , Environment , Water Purification/methods
2.
Sci Total Environ ; 871: 162082, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36754331

ABSTRACT

Interest is growing in simple, fast and inexpensive systems to analyze urban wastewater quality in real time. In this research project, a methodology is presented for the characterization of COD, BOD5, TSS, TN, and TP of wastewater samples, without the need to alter the samples or use chemical reagents, from a few wavelengths, belonging to the different color groups that compose the visible spectrum in isolation: (380-700 nm): violet (380-427 nm), blue (427-476 nm), cyan (476-497 nm), green (497-570 nm), yellow (570-581 nm), orange (581-618 nm), and red (618-700 nm). In this study, about 650 raw and treated urban wastewater samples from over 43 WWTPs and a total of 36 estimation models based on genetic algorithms have been calculated. Seven models were calculated for each pollutant parameter; one model for each color group of the visible spectrum, except for TN, which includes an additional model combining the wavelengths of the violet and red region of the spectrum. All the calculated models showed high accuracy, with an R2 between 80 and 85 % for COD, BOD5 and TSS, and 66-74 % for TN and TP. The tests carried out have shown the accuracy of the models of the different color groups to be very close to each other. However, it is noted that the models making use of the wavelengths between 497 and 570 nm (green) were the ones that showed the best performance in all the parameters under study. This research work lays the foundations for the development of cheaper, faster, and simpler wastewater monitoring and characterization equipment.

SELECTION OF CITATIONS
SEARCH DETAIL
...