Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Soft Matter ; 12(13): 3246-51, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26931173

ABSTRACT

We report the behaviour of thermoresponsive block copolymers of n-butyl acrylate and N-alkyl acrylamides in [C2mim][NTf2]. Poly(N-isopropylacrylamide) exhibits an upper critical solution temperature in [C2mim][NTf2] whereas poly(n-butyl acrylate) has a lower critical solution temperature. Consequently, these polymers exhibit double thermo-responsiveness correlated with the macromolecular structure. Moreover, a switching from micellar to reverse micellar structures was induced by a change in temperature. This property enables the development of reversible shuttles between ionic liquids and water.

2.
Int J Obes (Lond) ; 38(5): 707-13, 2014 May.
Article in English | MEDLINE | ID: mdl-23979219

ABSTRACT

BACKGROUND: It has been suggested that the metabolic benefits of physical exercise could be mediated by myokines. We examined here the effect of exercise training on skeletal muscle expression of a panel of myokines in humans. Pathways regulating myokine expression were investigated in human myotubes. METHODS: Eleven obese non-diabetic male subjects were enrolled in an 8-week endurance training program. Insulin sensitivity was assessed by an oral glucose tolerance test. Subcutaneous adipose tissue and Vastus lateralis muscle biopsy samples were collected before and after training. RNAs were prepared from adipose tissue and skeletal muscle. Primary culture of myoblasts was established. RESULTS: As expected, exercise training improved aerobic capacity and decreased fat mass. No significant change in interleukin 6, fibroblast growth factor 21, myostatin (MSTN) or irisin mRNA level was found in muscle after training. A twofold increase in apelin mRNA level was found in muscle but not in adipose tissue. No change in circulating myokine and adipokine plasma levels was observed in the resting state in response to training. Interestingly, apelin was significantly expressed and secreted in primary human myotubes. Apelin gene expression was upregulated by cyclic AMP and calcium, unlike the other myokines investigated. Importantly, changes in muscle apelin mRNA levels were positively related to whole-body insulin sensitivity improvement. CONCLUSION: Collectively, our data show that exercise training upregulates muscle apelin expression in obese subjects. Apelin expression is induced by exercise signaling pathways and secreted in vitro in human primary myotubes, and may behave as a novel exercise-regulated myokine with autocrine/paracrine action.


Subject(s)
Exercise , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Obesity/metabolism , Physical Endurance , Adult , Apelin , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/metabolism , Fibronectins/metabolism , Humans , Insulin Resistance , Intercellular Signaling Peptides and Proteins/metabolism , Interleukin-6/metabolism , Male , Myostatin/metabolism , Obesity/prevention & control , Subcutaneous Fat/metabolism , Up-Regulation
3.
Diabetologia ; 56(8): 1792-801, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23666167

ABSTRACT

AIMS/HYPOTHESIS: Alterations in white adipose tissue (WAT) function, including changes in protein (adipokine) secretion and extracellular matrix (ECM) composition, promote an insulin-resistant state. We set out to identify novel adipokines regulated by body fat mass in human subcutaneous WAT with potential roles in adipose function. METHODS: Adipose transcriptome data and secretome profiles from conditions with increased/decreased WAT mass were combined. WAT donors were predominantly women. In vitro effects were assessed using recombinant protein. Results were confirmed by quantitative PCR/ELISA, metabolic assays and immunochemistry in human WAT and adipocytes. RESULTS: We identified a hitherto uncharacterised adipokine, semaphorin 3C (SEMA3C), the expression of which correlated significantly with body weight, insulin resistance (HOMA of insulin resistance [HOMAIR], and the rate constant for the insulin tolerance test [KITT]) and adipose tissue morphology (hypertrophy vs hyperplasia). SEMA3C was primarily found in mature adipocytes and had no direct effect on human adipocyte differentiation, lipolysis, glucose transport or the expression of ß-oxidation genes. This could in part be explained by the significant downregulation of its cognate receptors during adipogenesis. In contrast, in pre-adipocytes, SEMA3C increased the production/secretion of several ECM components (fibronectin, elastin and collagen I) and matricellular factors (connective tissue growth factor, IL6 and transforming growth factor-ß1). Furthermore, the expression of SEMA3C in human WAT correlated positively with the degree of fibrosis in WAT. CONCLUSIONS/INTERPRETATION: SEMA3C is a novel adipokine regulated by weight changes. The correlation with WAT hypertrophy and fibrosis in vivo, as well as its effects on ECM production in human pre-adipocytes in vitro, together suggest that SEMA3C constitutes an adipocyte-derived paracrine signal that influences ECM composition and may play a pathophysiological role in human WAT.


Subject(s)
Adipokines/metabolism , Extracellular Matrix/metabolism , Semaphorins/metabolism , Adipokines/genetics , Adipose Tissue, White/metabolism , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Microscopy, Confocal , Semaphorins/genetics
4.
Physiol Res ; 61(6): 597-607, 2012.
Article in English | MEDLINE | ID: mdl-23098653

ABSTRACT

Fatty acid composition of adipose tissue changes with weight loss. Palmitoleic acid as a possible marker of endogenous lipogenesis or its functions as a lipokine are under debate. Objective was to assess the predictive role of adipose triglycerides fatty acids in weight maintenance in participants of the DIOGENES dietary intervention study. After an 8-week low calorie diet (LCD) subjects with > 8 % weight loss were randomized to 5 ad libitum weight maintenance diets for 6 months: low protein (P)/low glycemic index (GI) (LP/LGI), low P/high GI (LP/HGI), high P/low GI (HP/LGI), high P/high GI (HP/HGI), and a control diet. Fatty acid composition in adipose tissue triglycerides was determined by gas chromatography in 195 subjects before the LCD (baseline), after LCD and weight maintenance. Weight change after the maintenance phase was positively correlated with baseline adipose palmitoleic (16:1n-7), myristoleic (14:1n-5) and trans-palmitoleic acid (16:1n-7t). Negative correlation was found with baseline oleic acid (18:1n-9). Lower baseline monounsaturated fatty acids (14:1n-5, 16:1n-7 and trans 16:1n-7) in adipose tissue triglycerides predict better weight maintenance. Lower oleic acid predicts lower weight decrease. These findings suggest a specific role of monounsaturated fatty acids in weight management and as weight change predictors.


Subject(s)
Adipose Tissue/chemistry , Fatty Acids/chemistry , Triglycerides/metabolism , Weight Loss/physiology , Adipose Tissue/metabolism , Adult , Body Weight , Fatty Acids/metabolism , Fatty Acids, Monounsaturated/chemistry , Fatty Acids, Monounsaturated/metabolism , Female , Glycemic Index , Humans , Male , Middle Aged , Oleic Acid/chemistry , Oleic Acid/metabolism , Triglycerides/analysis
5.
Int J Obes (Lond) ; 36(12): 1545-51, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22270380

ABSTRACT

BACKGROUND: Circulating angiotensin-converting enzyme (ACE) was identified as a predictor of weight loss maintenance in overweight/obese women of the Diogenes project. OBJECTIVE: To investigate whether ACE acted also as a predictor in men of the Diogenes study and to compare it with that in women. DESIGN: Subjects, who lost ≥ 8% of body weight induced by low-caloric diet in an 8-week weight loss period, were assigned to weight loss maintenance with dietary intervention for 6 months. SUBJECTS: 125 overweight/obese healthy men from eight European countries who completed whole intervention. MEASUREMENTS: Concentrations and activity of serum ACE at baseline and after the 8-week weight loss, in addition to anthropometric and physiological parameters. RESULTS: Serum ACE concentration decreased by 11.3 ± 10.6% during the weight loss period in men. A greater reduction is associated with less body weight regain during the maintenance period (r=0.227, P=0.012). ACE change was able to predict a weight regain ≤ 20% after 6 months, with an odds ratio of 1.59 (95% confidence interval (CI): 1.09-2.33, P=0.016) for every 10% reduction, which was independent of body mass index and weight loss. The prediction power was weaker in men than in women, but without a significant sex difference (P=0.137). In pooled subjects (N=218), the odds ratio was 1.96 (95% CI: 1.46-2.64, P<0.001). CONCLUSIONS: A greater reduction of ACE during weight loss is favorable for weight maintenance in both men and women. This can offer useful information for personalized advice to improve weight loss maintenance. It also confirms the role of ACE in the metabolic pathways of weight regulation.


Subject(s)
Obesity/blood , Peptidyl-Dipeptidase A/blood , Weight Loss , Adult , Biomarkers/blood , Cross-Sectional Studies , Diet, Reducing , Energy Intake , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Sex Distribution , Weight Gain
6.
Diabetologia ; 54(4): 876-87, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21267541

ABSTRACT

AIMS/HYPOTHESIS: Our goal was to identify a set of human adipose tissue macrophage (ATM)-specific markers and investigate whether their gene expression in subcutaneous adipose tissue (SAT) as well as in visceral adipose tissue (VAT) is related to obesity and to the occurrence of the metabolic syndrome. METHODS: ATM-specific markers were identified by DNA microarray analysis of adipose tissue cell types isolated from SAT of lean and obese individuals. We then analysed gene expression of these markers by reverse transcription quantitative PCR in paired samples of SAT and VAT from 53 women stratified into four groups (lean, overweight, obese and obese with the metabolic syndrome). Anthropometric measurements, euglycaemic-hyperinsulinaemic clamp, blood analysis and computed tomography scans were performed. RESULTS: A panel of 24 genes was selected as ATM-specific markers based on overexpression in ATM compared with other adipose tissue cell types. In SAT and VAT, gene expression of ATM markers was lowest in lean and highest in the metabolic syndrome group. mRNA levels in the two fat depots were negatively correlated with glucose disposal rate and positively associated with indices of adiposity and the metabolic syndrome. CONCLUSIONS/INTERPRETATION: In humans, expression of ATM-specific genes increases with the degree of adiposity and correlates with markers of insulin resistance and the metabolic syndrome to a similar degree in SAT and in VAT.


Subject(s)
Adipose Tissue/cytology , Intra-Abdominal Fat/cytology , Intra-Abdominal Fat/metabolism , Macrophages/metabolism , Metabolic Syndrome/metabolism , Obesity/metabolism , Subcutaneous Fat/cytology , Subcutaneous Fat/metabolism , Adipose Tissue/metabolism , Adult , Aged , Cells, Cultured , Female , Humans , Middle Aged , Overweight/metabolism , Young Adult
7.
Eur J Clin Invest ; 38(7): 516-22, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18578692

ABSTRACT

BACKGROUND: A novel adipokine, visfatin, was found to be related to adiposity in humans and regulated by a number of hormonal signals. The aim of this study was to investigate the relationships of visfatin expression in adipose tissue with potential regulatory factors such as insulin, testosterone and tumor necrosis factor-alpha (TNF-alpha) and to elucidate the effect of a diet induced weight reduction on adipose tissue mRNA expression and plasma levels of visfatin. MATERIALS AND METHODS: Biopsies of subcutaneous abdominal adipose tissue (SCAAT) and plasma samples were obtained at the beginning of the study from 47 pre-menopausal women (age 38.7 +/- 1.7 years, body mass index (BMI) 27.9 +/- 1.4 kg m(-2)), consisting of 15 lean, 16 overweight and 16 obese subjects. The subgroup of 32 overweight/obese women (age 42.1 +/- 1.9 years, BMI 31.2 +/- 0.9 kg m(-2)) underwent a 12 week hypocaloric weight reducing diet and samples were obtained at the end of the diet. Biopsy samples were analysed for visfatin and TNF-alpha mRNA levels and plasma was analysed for relevant metabolites and hormones. RESULTS: In the group of 47 subjects visfatin mRNA expression in SCAAT was negatively correlated with plasma free testosterone (r = -0. 363, P < 0.05) and BMI (r = -0.558, P < 0.01) and positively associated with adipose tissue TNF-alpha mRNA expression (r = 0.688, P < 0.01). The diet resulted in the reduction of body weight and in the decrease of plasma insulin, free testosterone and TNF-alpha levels. In the group of overweight/obese subjects visfatin mRNA in SCAAT increased after the diet and the diet induced increase was positively correlated with the magnitude of body weight loss. CONCLUSION: Visfatin mRNA expression in SCAAT is associated with TNF-alpha expression, plasma free testosterone and BMI in pre-menopausal women. A weight reducing hypocaloric diet results in the increase of visfatin mRNA in SCAAT.


Subject(s)
Hormones/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Subcutaneous Fat/metabolism , Weight Loss/physiology , Adult , Body Fat Distribution , Body Mass Index , Female , Hormones/blood , Humans , Middle Aged , Nicotinamide Phosphoribosyltransferase/blood , Statistics as Topic
8.
Physiol Res ; 57(6): 927-934, 2008.
Article in English | MEDLINE | ID: mdl-18052678

ABSTRACT

Retinol binding protein 4 (RBP4) is a novel adipokine which might be involved in the development of insulin resistance. The aim of the study was to investigate the expression of RBP4 mRNA in subcutaneous and visceral fat depots and the relationship between RBP4 plasma and mRNA levels relative to indices of adiposity and insulin resistance. In 59 Caucasian women (BMI 20 to 49 kg/m(2)) paired samples of subcutaneous and visceral fat were obtained for RBP4, leptin and GLUT 4 mRNA analysis using reverse transcription-quantitative PCR. Euglycemic hyperinsulinemic clamp and computed tomography scans were performed. RBP4 mRNA levels as well as GLUT 4 mRNA and leptin mRNA levels were lower (P<0.001, P<0.01 and P<0.001, respectively) in visceral compared to subcutaneous fat. No differences were found in RBP4 mRNA expression in the two fat depots or in RBP4 plasma levels between subgroups of non-obese subjects (n=26), obese subjects without metabolic syndrome (n=17) and with metabolic syndrome (n=16). No correlations between RBP4 mRNA or plasma levels relative to adiposity, glucose disposal rate and GLUT 4 mRNA expression in adipose tissue were found. There was a weak positive correlation between plasma RBP4 and plasma triglycerides (r = 0.30, p<0.05) and between plasma RBP4 and blood glucose (r = 0.26, p<0.05). Regardless of the state of adiposity or insulin resistance, RBP4 expression in humans was lower in visceral than in subcutaneous fat. We found no direct relationship between either RBP4 mRNA or its plasma levels and the adiposity or insulin resistance.


Subject(s)
Intra-Abdominal Fat/chemistry , Metabolic Syndrome/metabolism , Obesity/metabolism , Retinol-Binding Proteins, Plasma/analysis , Subcutaneous Fat/chemistry , Adiposity , Adult , Aged , Blood Glucose/analysis , Female , Glucose Transporter Type 4/analysis , Humans , Insulin/blood , Insulin Resistance , Intra-Abdominal Fat/diagnostic imaging , Intra-Abdominal Fat/physiopathology , Leptin/analysis , Male , Metabolic Syndrome/diagnostic imaging , Metabolic Syndrome/physiopathology , Middle Aged , Obesity/diagnostic imaging , Obesity/physiopathology , RNA, Messenger/analysis , Retinol-Binding Proteins, Plasma/genetics , Reverse Transcriptase Polymerase Chain Reaction , Subcutaneous Fat/diagnostic imaging , Subcutaneous Fat/physiopathology , Tomography, X-Ray Computed , Young Adult
9.
Int J Obes (Lond) ; 31(11): 1704-12, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17579637

ABSTRACT

CONTEXT: In various observational studies, an inverse relation between calcium intake and body weight has been observed. A possible explanation could be an increased calcium excretion through the faeces caused by an increased dietary calcium intake. OBJECTIVE: To examine whether an increased calcium intake could lead to changes in faecal fat and energy excretion. DESIGN: Four different isocaloric diets with various calcium contents (400, 1200 and 2500 mg from dairy and 1200 mg from calcium carbonate (1200S)) were administered in a crossover design for 7 days each. SUBJECTS: Five healthy men and five healthy women (age=28+/-2, body mass index=24.1+/-0.4, body fat%=25.6+/-2.4) were recruited by local announcement. MEASUREMENTS: At the end of every intervention period, faecal samples were collected for determination of fat, energy and calcium content, blood samples were obtained for determination of relevant blood parameters; and fat samples were obtained for measurement of the mRNA expression. Furthermore, resting energy expenditure and fat oxidation were measured with the ventilated-hood technique. RESULTS: We observed a non-significant 56% increase in fat excretion (P=0.159) on the 2500 mg diet, compared to the 400 mg diet. The 2500 mg diet significantly reduced the expression of fatty acid synthase (FAS) mRNA (P<0.05) and the calcium content of the diets significantly affected calcium excretion. Furthermore, we saw a significant decrease of serum triglycerides on the 1200S diet (P<0.05). CONCLUSION: In this study, we observed a trend towards a higher fat excretion on the high-calcium diet, but this difference failed to reach statistical significance. It is possible that the relatively high protein content of the experimental diets increased calcium absorption from the intestine, thus decreasing the amount of calcium available for binding to fat and eliminating possible effects of dietary calcium on fat excretion. Furthermore, we observed decreases in FAS mRNA expression and serum triglycerides as a result of a high calcium intake.


Subject(s)
Adipose Tissue/metabolism , Calcium, Dietary/pharmacology , Energy Metabolism/drug effects , Feces/chemistry , Lipid Metabolism/drug effects , Adipocytes/metabolism , Adult , Calcium, Dietary/administration & dosage , Calcium, Dietary/pharmacokinetics , Calorimetry, Indirect/methods , Cross-Over Studies , Diet , Energy Intake , Fatty Acid Synthases/biosynthesis , Feeding Behavior , Female , Gene Expression Regulation/drug effects , Humans , Male , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Triglycerides/blood
10.
Am J Physiol Endocrinol Metab ; 293(1): E246-51, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17389707

ABSTRACT

Thyroid dysfunction is associated with several abnormalities in intermediary metabolism, including impairment of lipolytic response to catecholamines in subcutaneous abdominal adipose tissue (SCAAT). Atrial natriuretic peptide (ANP) is a powerful lipolytic peptide; however, the role of ANP-mediated lipolysis in thyroid disease has not been elucidated. The aim of this study was to investigate the role of thyroid hormones in the regulation of ANP-induced lipolysis as well as in the gene expression of hormone-sensitive lipase, phosphodiesterase 3B (PDE3B), uncoupling protein-2 (UCP2), natriuretic peptide receptor type A, and beta(2)-adrenergic receptor in SCAAT of hyperthyroid and hypothyroid patients. Gene expression in SCAAT was studied in 13 hypothyroid and 11 hyperthyroid age-matched women before and 2-4 mo after the normalization of their thyroid status. A microdialysis study was performed on a subset of nine hyperthyroid and 10 hypothyroid subjects. ANP- and isoprenaline-induced lipolyses were higher in hyperthyroid subjects, with no differences between the groups following treatment. Hormone-sensitive lipase gene expression was higher in hyperthyroid compared with hypothyroid subjects before treatment, whereas no difference was observed following treatment. No differences in gene expression of other genes were observed between the two groups. Following treatment, the gene expression of UCP2 decreased in hyperthyroid, whereas the expression of PDE3B decreased in hypothyroid subjects. We conclude that thyroid hormones regulate ANP- and isoprenaline-mediated lipolysis in human SCAAT in vivo. Increased lipolytic subcutaneous adipose tissue response in hyperthyroid patients may involve postreceptor signaling mechanisms.


Subject(s)
Atrial Natriuretic Factor/pharmacology , Catecholamines/pharmacology , Gene Expression Regulation/drug effects , Hyperthyroidism/genetics , Hypothyroidism/genetics , Lipolysis/drug effects , Subcutaneous Fat, Abdominal/drug effects , Adult , Aged , Body Weight/drug effects , Energy Metabolism/drug effects , Female , Humans , Hyperthyroidism/metabolism , Hypothyroidism/metabolism , Isoproterenol/pharmacology , Middle Aged , Regional Blood Flow , Subcutaneous Fat, Abdominal/blood supply , Subcutaneous Fat, Abdominal/metabolism
11.
J Clin Endocrinol Metab ; 91(12): 5107-12, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16968804

ABSTRACT

CONTEXT: Obesity is characterized by a low-grade inflammatory state, which could play a role in insulin resistance. Dynamic strength training improves insulin sensitivity. OBJECTIVE: The objective of this study was to investigate, in obese subjects, whether the insulin sensitizing effect of dynamic strength training is associated with changes in plasma levels and gene expression of adipokines potentially involved in the development of insulin resistance. DESIGN: Twelve obese male subjects were investigated before and at the end of 3 months of dynamic strength training. Insulin sensitivity was evaluated using euglycemic-hyperinsulinemic clamp. Blood samples and needle biopsy samples of sc abdominal adipose tissue were obtained. The plasma levels and adipose tissue mRNA levels of adiponectin, leptin, IL-1beta, IL-6, and TNF-alpha were determined. RESULTS: The training induced an increase in the whole-body glucose disposal rate by 24% (P = 0.04). The body weight was not altered during the training. Plasma levels of leptin decreased during the training (16.6 +/- 6.3 vs. 13.1 +/- 5.7 ng/ml) by 21% (P < 0.02), whereas no change in plasma levels of other adipokines and C-reactive protein was observed. Gene expression of the investigated adipokines was not changed in sc adipose tissue during the training. CONCLUSIONS: In obese subjects, the dynamic strength training resulted in an improvement of whole-body insulin sensitivity. The increase in insulin sensitivity was not associated with training-induced modifications of plasma levels or adipose tissue gene expression of adipokines supposedly involved in the development of insulin resistance.


Subject(s)
Cytokines/blood , Cytokines/metabolism , Exercise/physiology , Insulin Resistance/physiology , Obesity/metabolism , Subcutaneous Fat/metabolism , Adiponectin/blood , Adiponectin/metabolism , Gene Expression , Humans , Interleukin-1beta/blood , Interleukin-1beta/metabolism , Interleukin-6/blood , Interleukin-6/metabolism , Leptin/blood , Leptin/metabolism , Male , Middle Aged , Muscle Strength/physiology , Obesity/blood , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/metabolism
12.
Eur J Clin Invest ; 36(3): 153-63, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16506959

ABSTRACT

BACKGROUND: Leptin is a secreted adipocyte hormone that plays a key role in the regulation of body weight homeostasis. The leptin effect on human white adipose tissue (WAT) is still debated. OBJECTIVE: The aim of this study was to assess whether the administration of polyethylene glycol-leptin (PEG-OB) in a single supraphysiological dose has transcriptional effects on genes of WAT and to identify its target genes and functional pathways in WAT. MATERIALS AND METHODS: Blood samples and WAT biopsies were obtained from 10 healthy nonobese men before treatment and 72 h after the PEG-OB injection, leading to an approximate 809-fold increase in circulating leptin. The WAT gene expression profile before and after the PEG-OB injection was compared using pangenomic microarrays. Functional gene annotations based on the gene ontology of the PEG-OB regulated genes were performed using both an 'in house' automated procedure and GenMAPP (Gene Microarray Pathway Profiler), designed for viewing and analyzing gene expression data in the context of biological pathways. RESULTS: Statistical analysis of microarray data revealed that PEG-OB had a major down-regulated effect on WAT gene expression, as we obtained 1,822 and 100 down- and up-regulated genes, respectively. Microarray data were validated using reverse transcription quantitative PCR. Functional gene annotations of PEG-OB regulated genes revealed that the functional class related to immunity and inflammation was among the most mobilized PEG-OB pathway in WAT. These genes are mainly expressed in the cell of the stroma vascular fraction in comparison with adipocytes. CONCLUSION: Our observations support the hypothesis that leptin could act on WAT, particularly on genes related to inflammation and immunity, which may suggest a novel leptin target pathway in human WAT.


Subject(s)
Adipose Tissue/drug effects , Leptin/analogs & derivatives , Polyethylene Glycols/administration & dosage , Recombinant Proteins/administration & dosage , Adipocytes/immunology , Adipose Tissue/immunology , Adult , Cytokines/genetics , DNA, Circular/analysis , Gene Expression Regulation/genetics , Humans , Inflammation/genetics , Inflammation/immunology , Injections , Leptin/administration & dosage , Leptin/blood , Leptin/genetics , Male , Oligonucleotide Array Sequence Analysis/methods , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction/methods
13.
Diabetologia ; 48(12): 2631-40, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16273345

ABSTRACT

AIMS/HYPOTHESIS: The aim of this study was to investigate whether dynamic strength training modifies the control of lipolysis, with particular attention paid to the involvement of the antilipolytic adrenergic alpha 2A receptor (ADRA2A) pathway. METHODS: Twelve obese men (age: 47.4+/-2.8 years; BMI: 32.7+/-0.9) were investigated during a 210-min euglycaemic-hyperinsulinaemic clamp conducted before and after 3 months of dynamic strength training. Before and during the third hour of the clamp, the lipolytic effect of a perfusion of isoproterenol or adrenaline (epinephrine) alone or associated with the ADRA2A antagonist phentolamine was evaluated using the microdialysis method of measuring extracellular glycerol concentration (EGC) in subcutaneous abdominal adipose tissue (SCAAT). In addition, biopsies of SCAAT were carried out before and after training to determine mRNA levels RESULTS: The training increased insulin sensitivity in adipose tissue. The decrease of EGC was more pronounced during the clamp conducted after the training period than during the clamp done in pre-training conditions. Before and after the training, catecholamines induced an increase in EGC, the increase being lower during the clamp on each occasion. The isoproterenol-induced increase in EGC was higher after the training. Adrenaline-induced lipolysis was potentiated by phentolamine after but not before the training. There were no training-induced changes in mRNA levels of key genes of the lipolytic pathway in SCAAT. CONCLUSIONS/INTERPRETATION: In obese subjects, dynamic strength training improves whole-body and adipose tissue insulin responsiveness. It increases responsiveness to the adrenergic beta receptor stimulation of lipolysis and to the antilipolytic action of catecholamines mediated by ADRA2As.


Subject(s)
Exercise/physiology , Insulin/physiology , Obesity/physiopathology , Receptors, Adrenergic, alpha-2/metabolism , Receptors, Adrenergic, beta-2/metabolism , Subcutaneous Fat, Abdominal/metabolism , 3',5'-Cyclic-AMP Phosphodiesterases/genetics , 3',5'-Cyclic-AMP Phosphodiesterases/physiology , Adrenergic alpha-2 Receptor Agonists , Adrenergic alpha-2 Receptor Antagonists , Adrenergic beta-2 Receptor Agonists , Adult , Cyclic Nucleotide Phosphodiesterases, Type 3 , Epinephrine/pharmacology , Fatty Acids, Nonesterified/blood , Glucose Clamp Technique , Glycerol/analysis , Glycerol/blood , Humans , Insulin Resistance/physiology , Isoproterenol/pharmacology , Lipid Metabolism , Lipolysis , Male , Middle Aged , Obesity/metabolism , Phentolamine/pharmacology , RNA, Messenger/analysis , Receptors, Adrenergic, alpha-2/genetics , Receptors, Adrenergic, beta-2/genetics , Sterol Esterase/genetics , Sterol Esterase/physiology , Subcutaneous Fat, Abdominal/chemistry
14.
J Physiol Biochem ; 61(2): 395-401, 2005 Jun.
Article in English | MEDLINE | ID: mdl-16180338

ABSTRACT

Plasma level of the protein VAP-1/SSAO (Vascular Adhesion Protein-1/Semicarbazide-Sensitive Amine Oxidase) is increased in diabetes and/or obesity and may be related to vascular complications associated to these pathologies. The aim of this work was to complete a preceding study where we described the role played by some hormones or metabolites, implicated in diabetes and/or obesity, in the regulation of the release of VAP-1/SSAO by 3T3-L1 adipocytes. Here we focused on the previously observed effect produced by TNFalpha in the release of VAP-1/SSAO and studied the effect of a beta-adrenergic compound, isoproterenol. Both compounds stimulated the release of VAP-1/SSAO to the culture medium but had a different effect on the VAP-1/SSAO membrane form. While TNFalpha produced a decrease on VAP-1/SSAO membrane form content, isoproterenol did not modify it. We thus observed two different ways of regulation of the release of VAP-1/SSAO by 3T3-L1 adipocytes by metabolites implicated in diabetes and adipose tissue physiopathology. Our work permits a better understanding of this increased plasma VAP-1/SSAO levels observed in diabetes.


Subject(s)
Adipocytes/drug effects , Adrenergic beta-Agonists/pharmacology , Amine Oxidase (Copper-Containing)/metabolism , Cell Adhesion Molecules/metabolism , Isoproterenol/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , 3T3-L1 Cells , Adipocytes/enzymology , Adipocytes/metabolism , Amine Oxidase (Copper-Containing)/analysis , Animals , Blotting, Western , Cell Culture Techniques , Cell Fractionation , Dose-Response Relationship, Drug , Electrophoresis, Polyacrylamide Gel , Mice , Solubility
15.
J. physiol. biochem ; 61(2): 395-402, abr. 2005. graf
Article in En | IBECS | ID: ibc-043447

ABSTRACT

Plasma level of the protein SSAO/VAP-1 (samicarbazide-sensitive amine oxidase / vascular-adhesion protein-1) is increased in diabetes and/or obesity and may be related to vascular complications associated to these pathologies. The aim of this work was to complete a preceding study where we described the role played by some hormones or metabolites, implicated in diabetes and/or obesity, in the regulation of the release of VAP-1/SSAO by 3T3-L1 adipocytes. Here we focused on the previously observed effect produced by TNFa in the release of VAP-1/SSAO and studied the effect of a beta-adrenergic compound, isoproterenol. Both compounds stimulated the release of VAP-1/SSAO to the culture medium but had a different effect on the SSAO/VAP-1 membrane form. While TNFa produced a decrease on SSAO/VAP-1 membrane form content, isoproterenol did not modify it. We thus observed two different ways of regulation of the release of SSAO/VAP-1 by 3T3-L1 adipocytes by metabolites implicated in diabetes and adipose tissue physiopathology. Our work permits a better understanding of this increased plasma SSAO/VAP-1 levels observed in diabetes


Los niveles plasmáticos de la proteina SSAO/VAP-1 están aumentados en la diabetes y la obesidad, lo que podría estar relacionado con las complicaciones vasculares asociadas a estas patologías. En continuidad con trabajos anteriores acerca del papel de algunas hormonas o metabolitos, implicados en la diabetes y obesidad. Se estudia en este trabajo el efecto producido por el TNFa y del agonista beta-adrenérgico, isoproterenol en la regulación de la liberación de VAP-1/SSAO por adipocitos 3T3-L1. Ambos compuestos estimularon la liberación de VAP-1/SSAO al medio de cultivo, pero tuvieron un efecto diferente sobre la isoforma ligada a la membrana de SSAO/VAP-1. Así, mientras que el TNFa produjo una disminución significativa en la actividad SSAO/VAP-1 ligada a la membrana, no se modificó por el isoproterenol. Además, observamos dos maneras diferentes de regulación de la liberación de SSAO/VAP-1 por adipocitos 3T3-L1 a través de metabolitos implicados en diabetes y fisiopatología del tejido adiposo. Nuestro trabajo permite un mejor entendimiento de estos niveles plasmáticos aumentados de SSAO/VAP-1 observados en diabetes


Subject(s)
Animals , Mice , Adipocytes , Adrenergic beta-Agonists/pharmacokinetics , Amine Oxidase (Copper-Containing) , Cell Adhesion Molecules , Isoproterenol/pharmacology , Blotting, Western , Cell Adhesion Molecules/metabolism , Cell Fractionation , 3T3-L1 Cells , Adipocytes/enzymology , Adipocytes/metabolism , Amine Oxidase (Copper-Containing)/analysis , Amine Oxidase (Copper-Containing)/metabolism , Dose-Response Relationship, Drug , Electrophoresis, Polyacrylamide Gel , Solubility
16.
Biochimie ; 87(1): 117-23, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15733746

ABSTRACT

Caloric restriction still remains the most efficient way to promote weight loss. Deciphering the molecular basis of adaptation to energy restriction is critical for the tailoring of new therapeutic strategies. This review focuses on the recent input of gene profiling on adipose tissue in obesity pathogenesis and on the new insights on adaptations occurring during very low caloric diet (VLCD) in humans. Hypocaloric diets improve a wide range of metabolic parameters including lipolytic efficiency, insulin sensitivity, and inflammatory profile. In the subcutaneous white adipose tissue (scWAT) the VLCD induced a decrease in the mRNA levels for the antilipolytic alpha2-adrenergic receptor associated with changes in catecholamine-induced adipocyte lipolytic capacity. The improvement in insulin sensitivity was not associated with a change in subcutaneous adipose tissue adiponectin gene expression or in its plasma level, suggesting that adiponectin is not involved in the regulation of VLCD-induced improvement of insulin sensitivity and that there is a small contribution of subcutaneous adipose tissue to plasma adiponectin levels. Pangenomic microarray studies in human scWAT revealed that a panel of inflammatory markers and acute phase reactants were over expressed in obese compared to lean subjects. Caloric restriction improved the inflammatory profile of obese subjects through a decrease of pro-inflammatory factors and an increase of anti-inflammatory molecules. These genes were mostly expressed in the stroma vascular fraction of the adipose tissue. Specific cell-type isolation and immunohistochemistry demonstrated that monocyte/macrophage lineage cells were responsible for the expression of both mRNA and protein inflammatory markers. The acute phase proteins serum amyloid A was highly expressed in mature adipocytes from obese subjects. Caloric restriction decreased both serum amyloid mRNA and circulating levels. Obesity now clearly appears as chronic low-grade inflammation state. Modulation of the inflammatory pathways may represent new therapeutic targets for the treatment of obesity-related complications.


Subject(s)
Adipose Tissue/physiology , Caloric Restriction , Obesity/diet therapy , Weight Loss , Adipose Tissue/metabolism , Animals , Energy Metabolism , Gene Expression Profiling , Humans , Inflammation/physiopathology , Mice , Proteomics
17.
Diabetologia ; 48(3): 519-28, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15729583

ABSTRACT

AIMS/HYPOTHESIS: The acute-phase proteins, serum amyloid As (SAA), are precursors of amyloid A, involved in the pathogenesis of AA amyloidosis. This work started with the characterisation of systemic AA amyloidosis concurrent with SAA overexpression in the subcutaneous white adipose tissue (sWAT) of an obese patient with a leptin receptor deficiency. In the present study a series of histopathological, cellular and gene expression studies was performed to assess the importance of SAA in common obesity and its possible production by mature adipocytes. MATERIALS AND METHODS: Gene expression profiling was performed in the sWAT of two extremely obese patients with a leptin receptor deficiency. Levels of the mRNAs of the different SAA isoforms were quantified in sWAT cellular fractions from lean subjects and from obese subjects before and after a very-low-calorie diet. These values were subsequently compared with serum levels of SAA in these individuals. In addition, histopathological analyses of sWAT were performed in lean and obese subjects. RESULTS: In sWAT, the expression of SAA is more than 20-fold higher in mature adipocytes than in the cells of the stroma vascular fraction (p<0.01). Levels of SAA mRNA expression and circulating levels of the protein are sixfold (p<0.001) and 3.5-fold (p<0.01) higher in obese subjects than in lean subjects, respectively. In lean subjects, 5% of adipocytes are immunoreactive for SAA, whereas the corresponding value is greater than 20% in obese subjects. Caloric restriction results in decreases of 45-75% in levels of the transcripts for the SAA isoforms and in circulating levels of the protein. CONCLUSIONS/INTERPRETATION: The results of the present study indicate that SAA is expressed by sWAT, and its production at this site is regulated by nutritional status. If amyloidosis is seen in the context of obesity, it is possible that production of SAA by adipocytes could be a contributory factor.


Subject(s)
Adipocytes/metabolism , Gene Expression Profiling , Nutritional Status , Obesity/physiopathology , Serum Amyloid A Protein/genetics , Adult , Diet, Reducing , Energy Intake , Female , Humans , Nutritional Physiological Phenomena , Premenopause , Receptors, Cell Surface/deficiency , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, Leptin , Reference Values , Skin
18.
Diabetologia ; 48(1): 123-31, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15624093

ABSTRACT

AIMS/HYPOTHESIS: Adaptation to energy restriction is associated with changes in gene expression in adipose tissue. However, it is unknown to what extent these changes are dependent on the energy restriction as such or on the macronutrient composition of the diet. METHODS: We determined the levels of transcripts for 38 genes that are expressed in adipose tissue and encode transcription factors, enzymes, transporters and receptors known to play critical roles in the regulation of adipogenesis, mitochondrial respiration, and lipid and carbohydrate metabolism. Two groups of 25 obese subjects following 10-week hypocaloric diet programmes with either 20-25 or 40-45% of total energy derived from fat were investigated. Levels of mRNA were measured by performing real-time RT-PCR on subcutaneous fat samples obtained from the subjects before and after the diets. RESULTS: The two groups of subjects lost 7 kg over the duration of the diets. Ten genes were regulated by energy restriction; however, none of the genes showed a significantly different response to the diets. Levels of peroxisome proliferator-activated receptor gamma co-activator 1alpha mRNA were increased, while the expression of the genes encoding leptin, osteonectin, phosphodiesterase 3B, hormone-sensitive lipase, receptor A for natriuretic peptide, fatty acid translocase, lipoprotein lipase, uncoupling protein 2 and peroxisome proliferator-activated receptor gamma was decreased. Clustering analysis revealed new potential coregulation of genes. For example, the expression of the genes encoding the adiponectin receptors may be regulated by liver X receptor alpha. CONCLUSIONS/INTERPRETATION: In accordance with the comparable loss of fat mass produced by the two diets, this study shows that energy restriction and/or weight loss rather than the ratio of fat: carbohydrate in a low-energy diet is of importance in modifying the expression of genes in the human adipose tissue.


Subject(s)
Adipose Tissue/physiopathology , Diet, Fat-Restricted , Diet, Reducing , Dietary Fats/pharmacology , Gene Expression Regulation/drug effects , Obesity/genetics , Adipose Tissue/drug effects , Carbohydrate Metabolism , Energy Metabolism , Humans , Lipid Metabolism , Mitochondria/genetics , Obesity/epidemiology , Obesity/physiopathology , Oxygen Consumption/drug effects , RNA, Messenger/genetics , Risk Factors , Transcription, Genetic
19.
J Clin Endocrinol Metab ; 89(3): 1325-31, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15001629

ABSTRACT

The effect of a 12-wk training program on sc abdominal adipose tissue (SCAAT) was studied in 11 obese women. Before and after the training, biopsies of SCAAT were performed for mRNA levels determination. Using the microdialysis method, involvement of alpha(2)- and beta-adrenergic receptor (ARs) in the control of lipolysis in SCAAT was studied using local perfusion of epinephrine alone or supplemented with phentolamine, an alpha(2)-AR antagonist. In addition, the variation in dialysate glycerol concentrations during exercise (50% peak oxygen consumption at 40 min) in a probe perfused with Ringer's solution was compared with that obtained in a probe perfused with Ringer's solution plus phentolamine. Training did not promote changes in the expression of key genes of the lipolytic pathway. The epinephrine-induced rise in the dialysate glycerol concentration was identical before and after training and was similarly potentiated by phentolamine. During exercise, the potentiating effect of phentolamine on the glycerol response was apparent before, but not after, training. The exercise-induced increase in plasma norepinephrine was lower after training (P = 0.04). In conclusion, training did not modify either the expression of genes involved in the control of lipolysis or alpha(2)- and beta-ARs in situ sensitivity to epinephrine in SCAAT. Training reduced the antilipolytic action of catecholamines mediated by alpha(2)-ARs during exercise, probably due to a reduction of exercise-induced catecholamine increase.


Subject(s)
Adipose Tissue/physiology , Obesity/physiopathology , Physical Endurance/physiology , Receptors, Adrenergic, alpha-2/genetics , Receptors, Adrenergic, beta/genetics , Abdomen , Adrenergic Agonists/administration & dosage , Adrenergic Agonists/blood , Adult , Blood Glucose , Body Mass Index , Epinephrine/administration & dosage , Epinephrine/blood , Fatty Acids, Nonesterified/blood , Female , Gene Expression/physiology , Glycerol/blood , Humans , Insulin/blood , Lipolysis/drug effects , Lipolysis/physiology , Norepinephrine/blood , Oxygen Consumption/physiology , RNA, Messenger/analysis , Receptors, Adrenergic, alpha-2/metabolism , Receptors, Adrenergic, beta/metabolism , Rest/physiology , Reverse Transcriptase Polymerase Chain Reaction
20.
Diabetologia ; 47(3): 429-438, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14968297

ABSTRACT

AIMS/HYPOTHESIS: Vascular adhesion protein-1 (VAP-1), which is identical to semicarbazide-sensitive amine oxidase (SSAO), is a dual-function membrane protein with adhesion properties and amine oxidase activity. A soluble form of VAP-1 is found in serum, where concentrations are enhanced in diabetes and obesity. In vitro, soluble VAP-1 enhances lymphocyte adhesion to endothelial cells, thus possibly participating in the enhanced lymphocyte adhesion capacity that is implicated in the cardiovascular complications associated with diabetes or obesity. In both, the tissue origin of the soluble VAP-1/SSAO is unknown. We examined whether adipose tissue, which has abundant expression of VAP-1/SSAO, is a source of soluble VAP-1. METHODS: We detected VAP-1/SSAO in plasma of diabetic animals, with or without VAP-1 immunoprecipitation, and in culture medium from 3T3-L1 adipocytes and human adipose tissue explants. VAP-1 protein glycosylation was measured. RESULTS: Diabetic and obese animals have increased plasma SSAO activity associated with VAP-1 protein. We also found that 3T3-L1 adipocytes and human adipose tissue explants release a soluble form of VAP-1/SSAO, which derives from the membrane. The release of soluble VAP-1 was enhanced by exposure of murine and human adipocytes to TNF-alpha and blocked by batimastat, a metalloprotease inhibitor. Partial ablation of adipose tissue reduced plasma SSAO activity in normal and diabetic rats. CONCLUSIONS/INTERPRETATION: Adipose cells are a source of soluble VAP-1/SSAO released by shedding of the membrane form. The release of SSAO is regulated by TNF-alpha and insulin. By releasing VAP-1/SSAO, adipose cells could contribute to the atherogenesis and vascular dysfunction associated with diabetes and obesity.


Subject(s)
Adipocytes/metabolism , Amine Oxidase (Copper-Containing)/metabolism , Cell Adhesion Molecules/metabolism , Metalloproteases/metabolism , 3T3 Cells , Adipocytes/cytology , Adipocytes/enzymology , Animals , Humans , Male , Mice , Neuraminidase/pharmacology , Obesity/physiopathology , Rats , Rats, Wistar , Rats, Zucker
SELECTION OF CITATIONS
SEARCH DETAIL
...