Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bone ; 68: 85-91, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25102437

ABSTRACT

In this study we investigated the effect of supplementing the diet of the growing male rat with different levels of calcium (from low to higher than recommended intakes at constant Ca/P ratio), on multiple factors (bone mass, strength, size, geometry, material properties, turnover) influencing bone strength during the bone accrual period. Rats, age 28days were supplemented for 4weeks with high Ca (1.2%), adequate Ca (0.5%) or low Ca level (0.2%). Bone metabolism and structural parameters were measured. No changes in body weight or food intake were observed among the groups. As anticipated, compared to the adequate Ca intake, low-Ca intake had a detrimental impact on bone growth (33.63 vs. 33.68mm), bone strength (-19.7% for failure load), bone architecture (-58% for BV/TV) and peak bone mass accrual (-29% for BMD) due to the hormonal disruption implied in Ca metabolism. In contrast, novel, surprising results were observed in that higher than adequate Ca intake resulted in improved peak bone strength (106 vs. 184N/mm for the stiffness and 61 vs. 89N for the failure load) and bone material properties (467 vs. 514mPa for tissue hardness) but these effects were not accompanied by changes in bone mass, size, microarchitecture or bone turnover. Hormonal factors, IGF-I and bone modeling were also evaluated. Compared to the adequate level of Ca, IGF-I level was significantly lower in the low-Ca intake group and significantly higher in the high-Ca intake group. No detrimental effects of high Ca were observed on bone modeling (assessed by histomorphometry and bone markers), at least in this short-term intervention. In conclusion, the decrease in failure load in the low calcium group can be explained by the change in bone geometry and bone mass parameters. Thus, improvements in mechanical properties can be explained by the improved quality of intrinsic bone tissue as shown by nanoindentation. These results suggest that supplemental Ca may be beneficial for the attainment of peak bone strength and that multiple factors linked to bone mass and strength should be taken into account when setting dietary levels of adequate mineral intake to support optimal peak bone mass acquisition.


Subject(s)
Bone and Bones/physiology , Calcium, Dietary/pharmacology , Growth and Development/drug effects , Absorptiometry, Photon , Animals , Biomechanical Phenomena/drug effects , Body Weight/drug effects , Bone Density/drug effects , Bone Remodeling/drug effects , Bone and Bones/anatomy & histology , Bone and Bones/diagnostic imaging , Bone and Bones/drug effects , Calcification, Physiologic/drug effects , Calcium/metabolism , Femur/anatomy & histology , Femur/diagnostic imaging , Femur/drug effects , Femur/physiology , Imaging, Three-Dimensional , Male , Organ Size/drug effects , Rats, Sprague-Dawley , Tibia/anatomy & histology , Tibia/diagnostic imaging , Tibia/drug effects , Tibia/physiology , Weight-Bearing , X-Ray Microtomography
2.
Acta Physiol (Oxf) ; 210(1): 161-73, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23834457

ABSTRACT

AIM: To investigate the effect of a nutritional mixture (bovine milk oligosaccharides, Lactobacillus rhamnosus NCC4007, arachidonic and docosahexaenoic acid) on growth of intrauterine growth-restricted (IUGR) rats. METHODS: IUGR was induced by maternal food restriction. The offspring (males and females) were assigned to: REF (non-IUGR, no mixture), IUGRc (IUGR, no mixture), or IUGRmx (IUGR, mixture). The mixture was given from day 7 to day 58, when tissues and plasma from half of the animals were collected for hormones, metabolites and microarray analysis. The rest received a high-fat diet (HFD) until day 100. Glucose tolerance was measured at 56 and 98 days, and body fat content at 21, 52 and 97 days. RESULTS: IUGRmx had the greatest growth during lactation, but from day 22 to day 54, both IUGR groups gained less body weight than the REF (P < 0.05). In the short-term (58 days), IUGRmx tended to be longer (P = 0.06) and had less body fat (P = 0.03) than IUGRc. These differences were not seen after HFD. Microarray analysis of hepatic mRNA expression at 58 and 100 days revealed a gender-dependent treatment effect, and expression of genes related to lipid metabolism was the most affected. Twelve of these genes were selected for studying differences in DNA methylation in the promoter region, for some, we observed age- and gender-related differences but none because of treatment. CONCLUSION: The nutritional intervention promoted catch-up growth and normalized excessive adiposity in IUGR animals at short-term. The benefits did not extend after a period of HFD. IUGR and early diet had gender-dependent effects on hepatic gene expression.


Subject(s)
Adiposity/drug effects , Body Size , Fatty Acids, Unsaturated/therapeutic use , Fetal Growth Retardation/physiopathology , Fetal Growth Retardation/therapy , Lacticaseibacillus rhamnosus , Milk/chemistry , Weight Gain/drug effects , Animals , Female , Male , Rats , Rats, Sprague-Dawley
3.
Bone ; 46(2): 342-7, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19836004

ABSTRACT

UNLABELLED: It has been suggested that age-related deterioration in trabecular microarchitecture and changes in collagen cross-link concentrations may contribute to skeletal fragility. To further explore this hypothesis, we determined the relationships among trabecular bone volume fraction (BV/TV), microarchitecture, collagen cross-link content, and bone turnover in human vertebral trabecular bone. Trabecular bone specimens from L2 vertebrae were collected from 51 recently deceased donors (54-95 years of age; 20 men and 30 women). Trabecular bone volume and microarchitecture was assessed by microCT and bone formation, reflected by osteoid surface (OS/BS, %), was measured by 2D histomorphometry. Pyridinoline (PYD), deoxypyridinoline (DPD), pentosidine (PEN) and collagen content in the cancellous bone were analysed by high-performance liquid chromatography. Associations between variables were investigated by Pearson correlations and multiple regression models, which were constructed with BV/TV and collagen cross-links as explanatory variables and microarchitecture parameters as the dependent variables. RESULTS: Microarchitecture parameters were modestly to strongly correlated with BV/TV (r(2)=0.10-0.71). The amount of mature enzymatic PYD and DPD cross-links were not associated with the microarchitecture, either before or after adjustment for BV/TV. However, there was a positive correlation between PEN content and trabecular number (r=0.45, p=0.001) and connectivity density (r=0.40, p=0.004), and a negative correlation between PEN content and trabecular separation (r=-0.29, p=0.04). In the multiple regression models including BV/TV, age and PEN content was still significantly associated with several of the microarchitecture variables. In summary, this study suggests a link between trabecular microarchitecture and the collagen cross-link profile. As PEN reflects non-enzymatic glycation of collagen and generally increases with bone age, the association between PEN and trabecular architecture suggests that the preserved trabeculae may contain mainly old bone and have undergone little remodeling. Thus, vertebral fragility may not only be due to alterations in bone architecture but also to modification of collagen cross-link patterns thereby influencing bone's mechanical behavior.


Subject(s)
Collagen/metabolism , Cross-Linking Reagents/metabolism , Spine/pathology , Aged , Aged, 80 and over , Aging/pathology , Bone Density , Female , Humans , Male , Middle Aged , Sex Characteristics , Surface Properties
4.
Article in English | MEDLINE | ID: mdl-19027371

ABSTRACT

A rapid high performance liquid chromatographic method was developed including an internal standard for the measurement of mature and senescent crosslinks concentration in non-demineralized bone hydrolysates. To avoid the demineralization which is a tedious step, we developed a method based on the use of a solid-phase extraction procedure to clean-up the samples. It resulted in sensitive and accurate measurements: the detection limits as low as 0.2 pmol for the pyridimium crosslinks and 0.02 pmol for the pentosidine. The inter- and intra-assay coefficients of variation were as low as 5% and 2%, respectively, for all crosslinks.


Subject(s)
Bone and Bones/chemistry , Chromatography, High Pressure Liquid/methods , Collagen/chemistry , Animals , Cattle , Fluorescence , Hydrolysis , Reference Standards , Reproducibility of Results , Sensitivity and Specificity
5.
Bone ; 42(1): 139-49, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17974517

ABSTRACT

We developed an in vitro model which provides the ability to test the effects of advanced glycation end products (AGEs), specifically pentosidine (PEN) and one of its inhibitors, the aminoguanidine (AMG), on cortical bone. This model allows modification of the extent of collagen cross-linking, while controlling other factors known to influence bone strength. In this in vitro model, young bovine cortical bone specimens were incubated in phosphate-buffered saline (PBS)+/-ribose (RIB, an inducer of AGEs formation)+/-AMG for 15 days at 37 degrees C. The mineral and organic matrix as well as biomechanical properties were examined. We found that (i) incubation+/-treatments did not induce collagen denaturation compared to specimens that were not incubated; (ii) neither treatment or incubation time effected the concentration of trivalent enzymatic cross-links pyridinoline and deoxypyridinoline. The non-enzymatic cross-link PEN was undetectable in specimens that were not incubated or that were incubated in PBS or AMG alone. However, PEN concentration increased significantly in specimens incubated with RIB, whereas ribose-induced PEN formation was markedly inhibited by AMG. (iii) Incubation+/-treatments did not change the mineral maturity, crystallinity or microhardness assessed by X-ray diffraction, X-ray microscopy analyses, FTIRM and micro-indentation tests. (iv) PEN concentration was not associated with biomechanical properties assessed by 3-point bending. In conclusion, this in vitro incubation model of young bovine cortical bone induced physiologic concentrations of PEN in the RIB+AMG group and is the first to show that AMG inhibits ribose-induced formation of PEN cross-links in bone while not affecting the organic and mineral phases. AGE concentration did not influence bending mechanical properties; however, the simple 3-point bending test we used was likely inadequate to demonstrate effects of AGEs on mechanical properties.


Subject(s)
Femur/metabolism , Glucose/biosynthesis , Animals , Bone Density , Cattle , Collagen/metabolism , Femur/chemistry , Models, Animal , Porosity , Spectroscopy, Fourier Transform Infrared , Stress, Mechanical , Tomography, X-Ray Computed , X-Ray Diffraction
6.
Bone ; 39(5): 1073-1079, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16829221

ABSTRACT

Collagen characteristics contribute to bone biomechanical properties. Yet, few studies have analyzed the independent contributions of bone mineral density (BMD) and post-translational modifications of type I collagen to whole bone strength. Thus, the aim of this study was to determine the relative contributions of BMD and both enzymatic and non-enzymatic collagen crosslink concentration to the biomechanical properties of human vertebrae. Nineteen L3 vertebrae were collected after necropsy (age 26-93; 10 males, 9 females). BMD of the vertebral body was measured by DXA, and the vertebrae were compressed to failure to assess the stiffness, failure load and work to fracture. After mechanical testing, the concentration of both enzymatic crosslinks pyridinoline (PYD), and deoxypyridinoline (DPD) as well as, and the non-enzymatic crosslinks pentosidine (PEN) were analyzed in trabecular and cortical bone by reversed-phase HPLC. The extent of aspartic acid isomerization of type I collagen C telopeptide (CTX) was evaluated by ELISA of native (alpha CTX) and isomerized (beta CTX) forms. BMD was significantly positively related with stiffness (R(2) = 0.74; P < 0.0001), failure load (R(2) = 0.69; P < 0.0001) and work to fracture (R(2) = 0.44; P = 0.002). Bivariate regression analysis showed no association between collagen traits and biomechanical properties. However, in a multiple regression model, BMD and trabecular PEN were both significantly associated with failure load and work to fracture (multiple R(2) = 0.83, P = 0.001 and R(2) = 0.67, P = 0.001, respectively). Similarly, BMD and trabecular alpha/beta CTX ratio were both associated with stiffness (multiple R(2) = 0.83, P = 0.015). These findings indicate that post-translational modifications of type I collagen have an impact on skeletal fragility.


Subject(s)
Arginine/analogs & derivatives , Collagen Type I/metabolism , Glycation End Products, Advanced/metabolism , Lumbar Vertebrae/physiology , Lysine/analogs & derivatives , Absorptiometry, Photon/methods , Adult , Aged , Aged, 80 and over , Arginine/metabolism , Biomechanical Phenomena , Bone Density/physiology , Cadaver , Female , Humans , Lumbar Vertebrae/metabolism , Lumbar Vertebrae/physiopathology , Lysine/metabolism , Male , Middle Aged , Osteoporosis/metabolism , Osteoporosis/physiopathology
7.
Osteoporos Int ; 17(3): 319-36, 2006.
Article in English | MEDLINE | ID: mdl-16341622

ABSTRACT

Bone is a complex tissue of which the principal function is to resist mechanical forces and fractures. Bone strength depends not only on the quantity of bone tissue but also on the quality, which is characterized by the geometry and the shape of bones, the microarchitecture of the trabecular bones, the turnover, the mineral, and the collagen. Different determinants of bone quality are interrelated, especially the mineral and collagen, and analysis of their specific roles in bone strength is difficult. This review describes the interactions of type I collagen with the mineral and the contribution of the orientations of the collagen fibers when the bone is submitted to mechanical forces. Different processes of maturation of collagen occur in bone, which can result either from enzymatic or nonenzymatic processes. The enzymatic process involves activation of lysyl oxidase, which leads to the formation of immature and mature crosslinks that stabilize the collagen fibrils. Two type of nonenzymatic process are described in type I collagen: the formation of advanced glycation end products due to the accumulation of reducible sugars in bone tissue, and the process of racemization and isomerization in the telopeptide of the collagen. These modifications of collagen are age-related and may impair the mechanical properties of bone. To illustrate the role of the crosslinking process of collagen in bone strength, clinical disorders associated with bone collagen abnormalities and bone fragility, such as osteogenesis imperfecta and osteoporosis, are described.


Subject(s)
Bone Matrix/physiology , Collagen/physiology , Animals , Biomechanical Phenomena , Bone Density , Bone Development , Bone Matrix/physiopathology , Bone Remodeling , Fractures, Bone/physiopathology , Humans , Osteoporosis/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...