Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 947: 174623, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38997015

ABSTRACT

Balancing blue growth with the conservation of wild species and habitats is a key challenge for global ocean management. This is exacerbated in Global South nations, such as Tanzania, where climate-driven ocean change requires delicate marine spatial planning (MSP) trade-offs to ensure climate resilience of marine resources relied upon by coastal communities. Here, we identified challenges and opportunities that climate change presents to the near-term spatial management of Tanzania's artisanal fishing sector, marine protected areas and seaweed farming. Specifically, spatial meta-analysis of climate modelling for the region was carried out to estimate the natural distribution of climate resilience in the marine resources that support these socially important sectors. We estimated changes within the next 20 and 40 years, using modelling projections forced under global emissions trajectories, as well as a wealth of GIS and habitat suitability data derived from globally distributed programmes. Multi-decadal analyses indicated that long-term climate change trends and extreme weather present important challenges to the activity of these sectors, locally and regionally. Only in few instances did we identify areas exhibiting climate resilience and opportunities for sectoral expansion. Including these climate change refugia and bright spots in effective ocean management strategies may serve as nature-based solutions: promoting adaptive capacity in some of Tanzania's most vulnerable economic sectors; creating wage-gaining opportunities that promote gender parity; and delivering some economic benefits of a thriving ocean where possible. Without curbs in global emissions, however, a bleak future may emerge for globally valuable biodiversity hosted in Tanzania, and for its coastal communities, despite the expansion of protected areas or curbs in other pressures. Growing a sustainable ocean economy in this part of the Global South remains a substantial challenge without global decarbonization.

2.
Sci Rep ; 9(1): 1821, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30755688

ABSTRACT

Predictive species distribution models are mostly based on statistical dependence between environmental and distributional data and therefore may fail to account for physiological limits and biological interactions that are fundamental when modelling species distributions under future climate conditions. Here, we developed a state-of-the-art method integrating biological theory with survey and experimental data in a way that allows us to explicitly model both physical tolerance limits of species and inherent natural variability in regional conditions and thereby improve the reliability of species distribution predictions under future climate conditions. By using a macroalga-herbivore association (Fucus vesiculosus - Idotea balthica) as a case study, we illustrated how salinity reduction and temperature increase under future climate conditions may significantly reduce the occurrence and biomass of these important coastal species. Moreover, we showed that the reduction of herbivore occurrence is linked to reduction of their host macroalgae. Spatial predictive modelling and experimental biology have been traditionally seen as separate fields but stronger interlinkages between these disciplines can improve species distribution projections under climate change. Experiments enable qualitative prior knowledge to be defined and identify cause-effect relationships, and thereby better foresee alterations in ecosystem structure and functioning under future climate conditions that are not necessarily seen in projections based on non-causal statistical relationships alone.


Subject(s)
Herbivory/physiology , Seaweed/physiology , Animals , Climate Change , Ecosystem , Fucus/physiology
3.
Mar Pollut Bull ; 97(1-2): 135-149, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26117817

ABSTRACT

Biological effects of wastewater treatment plant (WWTP) effluents were investigated in Baltic mussels (Mytilus trossulus) caged for one month 800m and 1100m from the WWTP discharge site and at a reference site 4km away. Significant antioxidant, genotoxic and lysosomal responses were observed close to the point of the WWTP discharge. Passive samplers (POCIS) attached to the cages indicated markedly higher water concentrations of various pharmaceuticals at the two most impacted sites. Modeling the dispersal of a hypothetical passive tracer compound from the WWTP discharge site revealed differing frequencies and timing of the exposure periods at different caging sites. The study demonstrated for the first time the effectiveness of the mussel caging approach in combination with passive samplers and the application of passive tracer modeling to examine the true exposure patterns at point source sites such as WWTP pipe discharges in the Baltic Sea.


Subject(s)
Environmental Monitoring/methods , Models, Theoretical , Mytilus/drug effects , Waste Disposal, Fluid/methods , Wastewater , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/analysis , Finland , Toxicity Tests/methods , Water Pollutants, Chemical/analysis
4.
Sci Total Environ ; 529: 168-81, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26011613

ABSTRACT

Climate change is expected to increase annual and especially winter runoff, shorten the snow cover period and therefore increase both nutrient leaching from agricultural areas and natural background leaching in the Baltic Sea catchment. We estimated the effects of climate change and possible future scenarios of agricultural changes on the phosphorus and nitrogen loading to the Baltic Sea from Finnish catchments. In the agricultural scenarios we assumed that the prices of agricultural products are among the primary drivers in the adaptation to climate change, as they affect the level of fertilization and the production intensity and volume and, hence, the modeled changes in gross nutrient loading from agricultural land. Optimal adaptation may increase production while supporting appropriate use of fertilization, resulting in low nutrient balance in the fields. However, a less optimal adaptation may result in higher nutrient balance and increased leaching. The changes in nutrient loading to the Baltic Sea were predicted by taking into account the agricultural scenarios in a nutrient loading model for Finnish catchments (VEMALA), which simulates runoff, nutrient processes, leaching and transport on land, in rivers and in lakes. We thus integrated the effects of climate change in the agricultural sector, nutrient loading in fields, natural background loading, hydrology and nutrient transport and retention processes.

5.
Ecol Evol ; 5(22): 5203-5215, 2015 Nov.
Article in English | MEDLINE | ID: mdl-30151124

ABSTRACT

The majority of studies in metacommunity ecology have focused on systems other than marine benthic ecosystems, thereby providing an impetus to broaden the focus of metacommunity research to comprise marine systems. These systems are more open than many other systems and may thus exhibit relatively less discrete patterns in community structure across space. Metacommunity structure of soft-sediment benthic invertebrates was examined using a fine-grained (285 sites) data set collected during one summer across a large spatial extent (1700 km2). We applied the elements of metacommunity structure (EMS) approach, allowing multiple hypothesis of variation in community structure to be tested. We demonstrated several patterns associated with environmental variation and associated processes that could simultaneously assemble species to occur at the sites. A quasi-Clementsian pattern was observed frequently, suggesting interdependent ecological relationships among species or similar response to an underlying environmental gradient across sites. A quasi-nested clumped species loss pattern was also observed, which suggests nested habitat specialization. Species richness declined with depth (from 0.5 to 44.8 m). We argue that sensitive species may survive in shallower water, which are more stable with regard to oxygen conditions and present greater habitat complexity, in contrast to deeper waters, which may experience periodic disturbance due to hypoxia. Future studies should better integrate disturbance in terms of temporal dynamics and dispersal rates in the EMS approach. We highlight that shallow water sites may act as sources of recruitment to deeper water sites that are relatively more prone to periodic disturbances due to hypoxia. However, these shallow sites are not currently monitored and should be better prioritized in future conservation strategies in marine systems.

6.
Ambio ; 36(2-3): 186-94, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17520933

ABSTRACT

Eutrophication of the Baltic Sea has potentially increased the frequency and magnitude of cyanobacteria blooms. Eutrophication leads to increased sedimentation of organic material, increasing the extent of anoxic bottoms and subsequently increasing the internal phosphorus loading. In addition, the hypoxic water volume displays a negative relationship with the total dissolved inorganic nitrogen pool, suggesting greater overall nitrogen removal with increased hypoxia. Enhanced internal loading of phosphorus and the removal of dissolved inorganic nitrogen leads to lower nitrogen to phosphorus ratios, which are one of the main factors promoting nitrogenfixing cyanobacteria blooms. Because cyanobacteria blooms in the open waters of the Baltic Sea seem to be strongly regulated by internal processes, the effects of external nutrient reductions are scale-dependent. During longer time scales, reductions in external phosphorus load may reduce cyanobacteria blooms; however, on shorter time scales the internal phosphorus loading can counteract external phosphorus reductions. The coupled processes inducing internal loading, nitrogen removal, and the prevalence of nitrogen-fixing cyanobacteria can qualitatively be described as a potentially self-sustaining "vicious circle." To effectively reduce cyanobacteria blooms and overall signs of eutrophication, reductions in both nitrogen and phosphorus external loads appear essential.


Subject(s)
Cyanobacteria/growth & development , Ecosystem , Environmental Monitoring , Eutrophication , Nitrogen/metabolism , Phosphorus/metabolism , Seawater/microbiology , Baltic States , Hypoxia/pathology , Nitrogen/analysis , Nitrogen Fixation , Oxygen Consumption , Phosphorus/analysis , Population Dynamics , Risk Management , Time Factors
7.
Ambio ; 36(2-3): 195-202, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17520934

ABSTRACT

Cyanobacteria of the Baltic Sea have multiple effects on organisms that influence the food chain dynamics on several trophic levels. Cyanobacteria contain several bioactive compounds, such as alkaloids, peptides, and lipopolysaccharides. A group of nonribosomally produced oligopeptides, namely microcystins and nodularin, are tumor promoters and cause oxidative stress in the affected cells. Zooplankton graze on cyanobacteria, and when ingested, the hepatotoxins (nodularin) decrease the egg production of, for example, copepods. However, the observed effects are very variable, because many crustaceans are tolerant to nodularin and because cyanobacteria may complement the diet of grazers in small amounts. Cyanobacterial toxins are transferred through the food web from one trophic level to another. The transfer rate is relatively low in the pelagic food web, but reduced feeding and growth rates of fish larvae have been observed. In the benthic food web, especially in blue mussels, nodularin concentrations are high, and benthic feeding juvenile flounders have been observed to disappear from bloom areas. In the littoral ecosystem, gammarids have shown increased mortality and weakening of reproductive success under cyanobacterial exposure. In contrast, mysid shrimps seem to be tolerant to cyanobacterial exposure. In fish larvae, detoxication of nodularin poses a metabolic cost that is reflected as decreased growth and condition, which may increase their susceptibility to predation. Cyanobacterial filaments and aggregates also interfere with both hydromechanical and visual feeding of planktivores. The feeding appendages of mysid shrimps may clog, and the filaments interfere with prey detection of pike larvae. On the other hand, a cyanobacterial bloom may provide a refuge for both zooplankton and small fish. As the decaying bloom also provides an ample source of organic carbon and nutrients for the organisms of the microbial loop, the zooplankton species capable of selective feeding may thrive in bloom conditions. Cyanobacteria also compete for nutrients with other primary producers and change the nitrogen (N): phosphorus (P) balance of their environment by their N-fixation. Further, the bioactive compounds of cyanobacteria directly influence other primary producers, favoring cyanobacteria, chlorophytes, dinoflagellates, and nanoflagellates and inhibiting cryptophytes. As the selective grazers also shift the grazing pressure on other species than cyanobacteria, changes in the structure and functioning of the Baltic Sea communities and ecosystems are likely to occur during the cyanobacterial bloom season.


Subject(s)
Cyanobacteria/growth & development , Ecosystem , Food Contamination , Larva/drug effects , Marine Toxins , Seawater/microbiology , Alkaloids/chemistry , Alkaloids/metabolism , Alkaloids/toxicity , Animals , Baltic States , Carbon/chemistry , Carbon/metabolism , Cyanobacteria/chemistry , Cyanobacteria/pathogenicity , Environmental Monitoring , Fishes , Larva/growth & development , Lipopolysaccharides/chemistry , Lipopolysaccharides/metabolism , Lipopolysaccharides/toxicity , Marine Toxins/chemistry , Marine Toxins/metabolism , Marine Toxins/toxicity , Nodularia/chemistry , Nodularia/metabolism , Nodularia/pathogenicity , Organic Chemicals/metabolism , Peptides/chemistry , Peptides/metabolism , Peptides/toxicity , Time Factors , Zooplankton/metabolism
8.
Environ Toxicol ; 20(3): 354-62, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15892036

ABSTRACT

The aim of this study was to evaluate the potentially harmful effects of zooplankton preexposed to cyanobacteria on two planktivorous animals: a fish larva (pike, Esox lucius) and a mysid shrimp (Neomysis integer). The planktivores were fed zooplankton from a natural community that had been preexposed to cell-free extract or to purified toxin (nodularin) of the cyanobacterium Nodularia spumigena, and the growth, feeding, and pellet production of the planktivores, as well as the toxin content of the pellets, were measured. In addition, radiolabeled nodularin ((3)H-dihydronodularin) was used in separate experiments to measure the vector transfer of nodularin from zooplankton to their predators. During 11-day exposures, dissolved nodularin was transferred to pike larvae and N. integer via zooplankton at very low rates of accumulation. Treatment with N. spumigena extract decreased the ingestion and feces production rates of pike larvae. With purified nodularin alone, no such effect could be observed. No effect on molting cycle length, fecal pellet production, C:N ratio, or growth of N. integer was detected. The results suggest that dissolved cyanobacterial toxins released during bloom decay can have a negative impact on feeding and, hence, on the growth of fish larvae via zooplankton, even without direct contact between cyanobacteria and the fish.


Subject(s)
Crustacea/physiology , Esocidae/physiology , Food Chain , Nodularia/chemistry , Peptides, Cyclic/toxicity , Zooplankton/microbiology , Animals , Crustacea/growth & development , Diet , Eating , Esocidae/growth & development , Larva/growth & development , Nodularia/pathogenicity , Peptides, Cyclic/pharmacokinetics , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...