Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Stem Cell Res Ther ; 14(1): 287, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37798650

ABSTRACT

BACKGROUND: Evolving mutations of the novel coronavirus continue to fuel up the pandemic. The virus affects the human respiratory system along with other body systems, causing several sequelae in the survivors of the disease, presented as post-COVID-19 syndrome or long-COVID-19. This protocol utilized Hope Biosciences' autologous, adipose-derived mesenchymal stem cells (HB-adMSCs) to evaluate safety and efficacy of HB-adMSC therapy to improve signs and symptoms associated with post-COVID-19 syndrome. METHODS: Ten eligible subjects with post-COVID-19 syndrome were enrolled in the program for a duration of 40 weeks who received 5 intravenous infusions of 2 × 108 autologous HB-adMSCs each at week 0, 2, 6, 10 and 14 with a follow-up at week 18 and end of the study at week 40. Safety assessments included incidence of adverse and serious adverse events along with the laboratory measures of hematologic, hepatic, and renal function. Efficacy was examined by quality-of-life assessments, fatigue assessments, Visual analog scale (VAS) of symptoms and monitoring of respiration and oxygen saturation rates. RESULTS: VAS scores and Fatigue Assessment scores (FAS) showed significant improvements post-treatment (P = 0.0039, ES = 0.91) compared to baseline. Respiration rates and oxygen saturation levels that were within the normal range at the baseline remained unchanged at the end of the study (EOS). Paired comparison between baseline and EOS for short-form-36 health survey questionnaire (SF-36) scores also showed improved quality-of-life with significant improvements in individual SF-36 evaluations. Mostly mild AEs were reported during the study period with no incidence of serious AEs. Also, no detrimental effects in laboratory values were seen. CONCLUSIONS: The results of the expanded access program indicated that treatment with autologous HB-adMSCs resulted in significant improvements in the signs and symptoms associated with post-COVID-19 syndrome as assessed by VAS and FAS scores. Additionally, improvements in the patients' quality-of-life as demonstrated using SF-36 scores that also showed significant improvements in individual scaled scores. Overall, administration of multiple infusions of autologous HB-adMSCs is safe and efficacious for improvements in the quality-of life of patients with post-COVID-19 syndrome. TRIAL REGISTRATION: Clinical trial registration number: NCT04798066. Registered on March 15, 2021. ( https://clinicaltrials.gov/ct2/show/NCT04798066?term=hope+biosciences&cond=Post-COVID-19+Syndrome&draw=2&rank=2 ).


Subject(s)
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Post-Acute COVID-19 Syndrome , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cell Transplantation/methods , Treatment Outcome
2.
Front Neurol ; 14: 1257080, 2023.
Article in English | MEDLINE | ID: mdl-37840944

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease that involves the loss of dopaminergic neurons in the substantia nigra pars compacta of the basal ganglia. Clinically, patient presentation involves a combination of motor and non-motor symptoms characterized by progressive worsening over time and significant decreases in overall quality-of-life. Despite there being no fully restorative cure for PD, Mesenchymal Stem Cell (MSC) therapy offers promising therapeutic potential. Here, we report a case of a 77-year-old female, living with idiopathic Parkinson's Disease for over 17 years. The patient received multiple infusions of autologous Hope Biosciences adipose-derived MSCs (HB-adMSCs). A total of 26 infusion treatments of HB-adMSCs were administered over the course of ~2 years that resulted in marked improvements in her typical Parkinsonian symptoms, as demonstrated by the decreases in her UPDRS (Unified Parkinson's Disease Rating Scale) scores. Changes in clinical scores mirrored concurrent changes in regional brain metabolism as quantified by FDG-PET (Fluorodeoxyglucose-Positron Emission Tomography), compared to baseline. Long-term, multiple infusions of HB-adMSCs were safely tolerated by the patient without any serious adverse events. Further research is needed to evaluate the safety and efficacy of HB-adMSC therapy for the treatment of PD patients.

3.
Front Med (Lausanne) ; 10: 1321303, 2023.
Article in English | MEDLINE | ID: mdl-38188343

ABSTRACT

Objective: The purpose of the study was to assess the safety of allogeneic, Hope Biosciences Adipose Derived Mesenchymal Stem Cells (HB-adMSCs) for the treatment of hospitalized subjects with COVID-19. Methods: N = 48 patients were randomly assigned to HB-adMSC (100 MM) or placebo group. Four intravenous infusions of HB-adMSCs or saline were administered at days 0, 3, 7, 10. The primary safety endpoint was incidence of adverse and serious adverse events (AE/SAEs); secondary endpoints were incidence of specific AEs and alterations in hematology, biochemistry, and coagulation parameters. Results: Majority of AEs were mild in severity. HB-adMSC group showed a higher incidence of cardiopulmonary failure, anemia, anxiety, and diarrhea, while placebo group showed a higher incidence of headaches, fatigue, and chest discomfort (posterior probabilities ≥80%). Deaths were attributed to severe complications due to COVID-19 and were unrelated to study drug. No AEs were attributed to the treatment. Hematology and coagulation panel alterations were not associated with HB-adMSCs. Analyses of inflammatory markers showed increased levels of interleukin-6 and C-reactive protein over time in HB-adMSC group (posterior probabilities ≥78%). Conclusion: Multiple infusions of 100MM allogeneic HB-adMSCs were considered safe for the study population. More research is needed to determine the safety of MSC therapy. Clinical trial registration: (www.ClinicalTrials.gov) identifier NCT04362189.

4.
Front Transplant ; 2: 1287508, 2023.
Article in English | MEDLINE | ID: mdl-38993875

ABSTRACT

Spinal cord injury (SCI) is a debilitating disease with clinical manifestations ranging from incomplete neurological deficits affecting sensory and motor functions to complete paralysis. Recent advancements in stem cell research have elucidated the therapeutic potential of mesenchymal stem cells (MSCs) for the treatment of patients with SCI. Here, we present a case of a 41-year-old quadriplegic male individual who experienced a traumatic C-5 incomplete SCI, after slipping off a boat in Florida Keys on August 4, 2017. He was diagnosed with C5-C6 Grade 2 anterolisthesis with flexion teardrop fracture of the anterior C6 with jumped facet on the right and perched facet on the left at C5-C6 with spinal canal stenosis. On September 12, 2019, an Individual Expanded Access Protocol was approved for administration of multiple infusions of autologous, adipose-derived MSCs (adMSCs) for the treatment of this quadriplegic incomplete C5-6 SCI patient. Thirty-four (34) recurrent infusions each with 200 million cells were administered, over a period of ∼2.5 years, which resulted in significant improvements in his quality-of-life as demonstrated by substantial improvements in SCIM-III (Spinal Cord Independence Measure III) scores. Additionally, electromyography/nerve conduction velocity (EMG/NCV) studies showed improvements in the patient's motor and sensory function. No safety concerns were presented, and no serious adverse events were reported during the entire course of treatment. Multiple intravenous infusions of autologous HB-adMSCs for treatment of SCI demonstrated significant enhancements in the patient's neurological function with improved quality-of-life. Further research is needed to evaluate the results of this study.

5.
J Transl Autoimmun ; 5: 100166, 2022.
Article in English | MEDLINE | ID: mdl-36187443

ABSTRACT

Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease that involves abnormal activation of immune response, affecting multiple organs, including joints, kidneys, lungs, skin, and the hematopoietic system, thereby impairing their normal function. Despite there being no cure for SLE, Mesenchymal Stem Cell (MSC) therapy offers hope for SLE patients because of its potent role in immunomodulation. Here, we report a case of a 65-year-old female battling with SLE for almost 30 years and on a treatment regimen consisting of several medications. Given the level of immunosuppression associated with conventional SLE treatments, the subject was initially enrolled as a participant in a study protocol designed to provide immune protection against COVID-19. The subject received multiple infusions of autologous Hope Biosciences adipose-derived MSCs (HB-adMSCs) which significantly improved her SLE symptoms and functionality that led the patient's physician to discontinue her Rituximab regime. Based on her response to HB-adMSC therapy, the subject was approved to receive a set of nine infusion treatments to specifically treat her SLE symptoms. Over the course of ∼ one year, the first six infusions were given on a monthly basis, while the remaining three were administered bimonthly - each with a dose of 200 million HB-adMSCs. Since the beginning of the treatment, the subject showed remarkable improvements in her SLE symptoms, as demonstrated by changes in her SF-36 questionnaire responses, Visual Analog Scale (VAS) scores, and C-Reactive Protein (CRP) measurements; however, worsening of the symptoms was noted later during treatment course (when the frequency of infusions changed to bimonthly). Although the shift in remission-relapse cycle is not fully understood, however, the data suggest that treatment frequency might be the key player. No serious adverse events occurred during the entire treatment period. Further research is needed to evaluate the results of this study.

6.
Stem Cell Res Ther ; 13(1): 88, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241141

ABSTRACT

OBJECTIVE: The present study is a phase I/IIa non-randomized, open-label study to evaluate safety and efficacy of a single, intravenous infusion of autologous, adipose-derived mesenchymal stem cells (adMSCs) over a period of 52 weeks, in patients with active rheumatoid arthritis (RA). METHODS: 15 eligible RA patients aged 18-65 years were enrolled and followed up at weeks 4, 12, 26 and 52 after receiving a single intravenous dose of 2 × 108 adMSCs. Efficacy was examined using American College of Rheumatology (ACR66/68 score) criteria for swollen and tender joint counts (S/TJC), and serum TNF-α, IL-6, CRP, and ESR levels. Safety endpoints included measures of hematologic, hepatic, and renal function. RESULTS: ACR66/68 scores for both S/TJC showed significant improvements with large effect sizes (ES) at week 52 vs baseline (p < 0.01, ES = 0.83 and p < 0.001, ES = 0.93 respectively). Medium to large ES were also obvious for ACR66/68 scores measured at other timepoints. Levels of inflammatory markers, TNF-α, IL-6 and ESR remained unchanged compared to baseline. However, a difference in CRP levels with a small effect size was observed at week 4 (p = 0.229, ES = 0.33) with further improvement at week 52 (p = 0.183, ES = 0.37). Post-intervention, levels of hematologic, hepatic, and renal function remained largely unchanged (p > 0.05). No acute or long-term serious adverse events (AEs) occurred. CONCLUSIONS: The results indicated that a single, intravenous administration of autologous adMSCs is safe and efficacious for improvement in joint function in patients with active RA. Data from the current study supports the exploration of ad-MSCs as a therapeutic intervention for RA. Trial Registration Clinical trial registration number: NCT03691909. Registered September 27, 2018- Retrospectively registered ( https://clinicaltrials.gov/show/NCT03691909 ).


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Mesenchymal Stem Cells , Adolescent , Adult , Aged , Antirheumatic Agents/adverse effects , Arthritis, Rheumatoid/drug therapy , Double-Blind Method , Humans , Middle Aged , Treatment Outcome , Tumor Necrosis Factor-alpha , Young Adult
7.
J Neurosci ; 40(41): 7980-7994, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32887745

ABSTRACT

SYNGAP1 is a major genetic risk factor for global developmental delay, autism spectrum disorder, and epileptic encephalopathy. De novo loss-of-function variants in this gene cause a neurodevelopmental disorder defined by cognitive impairment, social-communication disorder, and early-onset seizures. Cell biological studies in mouse and rat neurons have shown that Syngap1 regulates developing excitatory synapse structure and function, with loss-of-function variants driving formation of larger dendritic spines and stronger glutamatergic transmission. However, studies to date have been limited to mouse and rat neurons. Therefore, it remains unknown how SYNGAP1 loss of function impacts the development and function of human neurons. To address this, we used CRISPR/Cas9 technology to ablate SYNGAP1 protein expression in neurons derived from a commercially available induced pluripotent stem cell line (hiPSC) obtained from a human female donor. Reducing SynGAP protein expression in developing hiPSC-derived neurons enhanced dendritic morphogenesis, leading to larger neurons compared with those derived from isogenic controls. Consistent with larger dendritic fields, we also observed a greater number of morphologically defined excitatory synapses in cultures containing these neurons. Moreover, neurons with reduced SynGAP protein had stronger excitatory synapses and expressed synaptic activity earlier in development. Finally, distributed network spiking activity appeared earlier, was substantially elevated, and exhibited greater bursting behavior in SYNGAP1 null neurons. We conclude that SYNGAP1 regulates the postmitotic maturation of human neurons made from hiPSCs, which influences how activity develops within nascent neural networks. Alterations to this fundamental neurodevelopmental process may contribute to the etiology of SYNGAP1-related disorders.SIGNIFICANCE STATEMENTSYNGAP1 is a major genetic risk factor for global developmental delay, autism spectrum disorder, and epileptic encephalopathy. While this gene is well studied in rodent neurons, its function in human neurons remains unknown. We used CRISPR/Cas9 technology to disrupt SYNGAP1 protein expression in neurons derived from an induced pluripotent stem cell line. We found that induced neurons lacking SynGAP expression exhibited accelerated dendritic morphogenesis, increased accumulation of postsynaptic markers, early expression of synapse activity, enhanced excitatory synaptic strength, and early onset of neural network activity. We conclude that SYNGAP1 regulates the postmitotic differentiation rate of developing human neurons and disrupting this process impacts the function of nascent neural networks. These altered developmental processes may contribute to the etiology of SYNGAP1 disorders.


Subject(s)
Dendrites/physiology , Nerve Net/physiology , Nervous System/growth & development , Synapses/physiology , ras GTPase-Activating Proteins/genetics , ras GTPase-Activating Proteins/physiology , CRISPR-Cas Systems , Cell Differentiation/genetics , Cell Size , Cells, Cultured , Excitatory Postsynaptic Potentials/genetics , Female , Gene Deletion , Humans , Neurodevelopmental Disorders/genetics , Pluripotent Stem Cells
9.
Stem Cell Reports ; 12(2): 201-212, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30639213

ABSTRACT

Retinal ganglion cells (RGCs) form the connection between the eye and the brain, with this connectivity disrupted in numerous blinding disorders. Previous studies have demonstrated the ability to derive RGCs from human pluripotent stem cells (hPSCs); however, these cells exhibited some characteristics that indicated a limited state of maturation. Among the many factors known to influence RGC development in the retina, astrocytes are known to play a significant role in their functional maturation. Thus, efforts of the current study examined the functional maturation of hPSC-derived RGCs, including the ability of astrocytes to modulate this developmental timeline. Morphological and functional properties of RGCs were found to increase over time, with astrocytes significantly accelerating the functional maturation of hPSC-derived RGCs. The results of this study clearly demonstrate the functional and morphological maturation of RGCs in vitro, including the effects of astrocytes on the maturation of hPSC-derived RGCs.


Subject(s)
Astrocytes/cytology , Cell Differentiation/physiology , Pluripotent Stem Cells/cytology , Retina/cytology , Retinal Ganglion Cells/cytology , Cells, Cultured , Humans
10.
J Gen Physiol ; 151(4): 465-477, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30635369

ABSTRACT

Receptors alternate between resting↔active conformations that bind agonists with low↔high affinity. Here, we define a new agonist attribute, energy efficiency (η), as the fraction of ligand-binding energy converted into the mechanical work of the activation conformational change. η depends only on the resting/active agonist-binding energy ratio. In a plot of activation energy versus binding energy (an "efficiency" plot), the slope gives η and the y intercept gives the receptor's intrinsic activation energy (without agonists; ΔG0). We used single-channel electrophysiology to estimate η for eight different agonists and ΔG0 in human endplate acetylcholine receptors (AChRs). From published equilibrium constants, we also estimated η for agonists of KCa1.1 (BK channels) and muscarinic, γ-aminobutyric acid, glutamate, glycine, and aryl-hydrocarbon receptors, and ΔG0 for all of these except KCa1.1. Regarding AChRs, η is 48-56% for agonists related structurally to acetylcholine but is only ∼39% for agonists related to epibatidine; ΔG0 is 8.4 kcal/mol in adult and 9.6 kcal/mol in fetal receptors. Efficiency plots for all of the above receptors are approximately linear, with η values between 12% and 57% and ΔG0 values between 2 and 12 kcal/mol. Efficiency appears to be a general attribute of agonist action at receptor binding sites that is useful for understanding binding mechanisms, categorizing agonists, and estimating concentration-response relationships.


Subject(s)
Receptors, Cholinergic/chemistry , Receptors, Cholinergic/metabolism , Binding Sites , HEK293 Cells , Humans , Ion Channel Gating , Models, Chemical , Mutation , Protein Conformation , Protein Engineering , Protein Subunits , Thermodynamics
11.
J Gen Physiol ; 149(1): 85-103, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27932572

ABSTRACT

Nicotinic acetylcholine receptors are allosteric proteins that generate membrane currents by isomerizing ("gating") between resting and active conformations under the influence of neurotransmitters. Here, to explore the mechanisms that link the transmitter-binding sites (TBSs) with the distant gate, we use mutant cycle analyses to measure coupling between residue pairs, phi value analyses to sequence domain rearrangements, and current simulations to reproduce a microsecond shut component ("flip") apparent in single-channel recordings. Significant interactions between amino acids separated by >15 Å are rare; an exception is between the αM2-M3 linkers and the TBSs that are ∼30 Å apart. Linker residues also make significant, local interactions within and between subunits. Phi value analyses indicate that without agonists, the linker is the first region in the protein to reach the gating transition state. Together, the phi pattern and flip component suggest that a complete, resting↔active allosteric transition involves passage through four brief intermediate states, with brief shut events arising from sojourns in all or a subset. We derive energy landscapes for gating with and without agonists, and propose a structure-based model in which resting→active starts with spontaneous rearrangements of the M2-M3 linkers and TBSs. These conformational changes stabilize a twisted extracellular domain to promote transmembrane helix tilting, gate dilation, and the formation of a "bubble" that collapses to initiate ion conduction. The energy landscapes suggest that twisting is the most energetically unfavorable step in the resting→active conformational change and that the rate-limiting step in the reverse process is bubble formation.


Subject(s)
Ion Channel Gating/physiology , Receptors, Nicotinic/metabolism , Animals , Binding Sites , Crystallography, X-Ray , Mice , Models, Molecular , Molecular Conformation , Mutation , Receptors, Nicotinic/genetics
12.
J Gen Physiol ; 146(5): 375-86, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26503719

ABSTRACT

The time course of the endplate current is determined by the rate and equilibrium constants for acetylcholine receptor (AChR) activation. We measured these constants in single-channel currents from AChRs with mutations at the neurotransmitter-binding sites, in loop C. The main findings are: (a) Almost all perturbations of loop C generate heterogeneity in the channel open probability ("modes"). (b) Modes are generated by different affinities for ACh that can be either higher or lower than in the wild-type receptors. (c) The modes are stable, in so far as each receptor maintains its affinity for at least several minutes. (d) Different agonists show different degrees of modal activity. With the loop C mutation αP197A, there are four modes with ACh but only two with partial agonists. (e) The affinity variations arise exclusively from the αδ-binding site. (f) Substituting four γ-subunit residues into the δ subunit (three in loop E and one in the ß5-ß5' linker) reduces modal activity. (g) At each neurotransmitter-binding site, affinity is determined by a core of five aromatic residues. Modes are eliminated by an alanine mutation at δW57 but not at the other aromatics. (h) Modes are eliminated by a phenylalanine substitution at all core aromatics except αY93. The results suggest that, at the αδ agonist site, loop C and the complementary subunit surface can each adopt alternative conformations and interact with each other to influence the position of δW57 with respect to the aromatic core and, hence, affinity.


Subject(s)
Mutation , Receptors, Cholinergic/chemistry , Amino Acid Sequence , Amino Acid Substitution , Binding Sites , Cholinergic Agonists/pharmacology , HEK293 Cells , Humans , Molecular Sequence Data , Protein Binding , Receptors, Cholinergic/genetics , Receptors, Cholinergic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...