Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Subcell Biochem ; 106: 3-36, 2023.
Article in English | MEDLINE | ID: mdl-38159222

ABSTRACT

Cryo-electron tomography (cryo-ET) has emerged as a powerful tool in structural biology to study viruses and is undergoing a resolution revolution. Enveloped viruses comprise several RNA and DNA pleomorphic viruses that are pathogens of clinical importance to humans and animals. Considerable efforts in cryogenic correlative light and electron microscopy (cryo-CLEM), cryogenic focused ion beam milling (cryo-FIB), and integrative structural techniques are helping to identify virus structures within cells leading to a rise of in situ discoveries shedding light on how viruses interact with their hosts during different stages of infection. This chapter reviews recent advances in the application of cryo-ET in imaging enveloped viruses and the structural and mechanistic insights revealed studying the viral infection cycle within their eukaryotic cellular hosts, with particular attention to viral entry, replication, assembly, and egress during infection.


Subject(s)
Electron Microscope Tomography , Viruses , Animals , Humans , Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Eukaryotic Cells
2.
ACS Sens ; 8(9): 3338-3348, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37610841

ABSTRACT

Our growing ability to tailor healthcare to the needs of individuals has the potential to transform clinical treatment. However, the measurement of multiple biomarkers to inform clinical decisions requires rapid, effective, and affordable diagnostics. Chronic diseases and rapidly evolving pathogens in a larger population have also escalated the need for improved diagnostic capabilities. Current chemical diagnostics are often performed in centralized facilities and are still dependent on multiple steps, molecular labeling, and detailed analysis, causing the result turnaround time to be over hours and days. Rapid diagnostic kits based on lateral flow devices can return results quickly but are only capable of detecting a handful of pathogens or markers. Herein, we present the use of disposable plasmonics with chiroptical nanostructures as a platform for low-cost, label-free optical biosensing with multiplexing and without the need for flow systems often required in current optical biosensors. We showcase the detection of SARS-CoV-2 in complex media as well as an assay for the Norovirus and Zika virus as an early developmental milestone toward high-throughput, single-step diagnostic kits for differential diagnosis of multiple respiratory viruses and any other emerging diagnostic needs. Diagnostics based on this platform, which we term "disposable plasmonics assays," would be suitable for low-cost screening of multiple pathogens or biomarkers in a near-point-of-care setting.


Subject(s)
Biosensing Techniques , COVID-19 , Zika Virus Infection , Zika Virus , Humans , SARS-CoV-2 , COVID-19/diagnosis , Biosensing Techniques/methods , Virion/chemistry , Biomarkers/analysis
4.
Nat Microbiol ; 7(11): 1879-1890, 2022 11.
Article in English | MEDLINE | ID: mdl-36280786

ABSTRACT

Interactions between respiratory viruses during infection affect transmission dynamics and clinical outcomes. To identify and characterize virus-virus interactions at the cellular level, we coinfected human lung cells with influenza A virus (IAV) and respiratory syncytial virus (RSV). Super-resolution microscopy, live-cell imaging, scanning electron microscopy and cryo-electron tomography revealed extracellular and membrane-associated filamentous structures consistent with hybrid viral particles (HVPs). We found that HVPs harbour surface glycoproteins and ribonucleoproteins of IAV and RSV. HVPs use the RSV fusion glycoprotein to evade anti-IAV neutralizing antibodies and infect and spread among cells lacking IAV receptors. Finally, we show that IAV and RSV coinfection in primary cells of the bronchial epithelium results in viral proteins from both viruses co-localizing at the apical cell surface. Our observations define a previously unknown interaction between respiratory viruses that might affect virus pathogenesis by expanding virus tropism and enabling immune evasion.


Subject(s)
Coinfection , Influenza A virus , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Humans , Respiratory Syncytial Virus Infections/metabolism , Antibodies, Viral/metabolism , Virion/metabolism
5.
EMBO J ; 41(3): e109728, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34935163

ABSTRACT

Human respiratory syncytial virus (RSV) causes severe respiratory illness in children and the elderly. Here, using cryogenic electron microscopy and tomography combined with computational image analysis and three-dimensional reconstruction, we show that there is extensive helical ordering of the envelope-associated proteins and glycoproteins of RSV filamentous virions. We calculated a 16 Å resolution sub-tomogram average of the matrix protein (M) layer that forms an endoskeleton below the viral envelope. These data define a helical lattice of M-dimers, showing how M is oriented relative to the viral envelope. Glycoproteins that stud the viral envelope were also found to be helically ordered, a property that was coordinated by the M-layer. Furthermore, envelope glycoproteins clustered in pairs, a feature that may have implications for the conformation of fusion (F) glycoprotein epitopes that are the principal target for vaccine and monoclonal antibody development. We also report the presence, in authentic virus infections, of N-RNA rings packaged within RSV virions. These data provide molecular insight into the organisation of the virion and the mechanism of its assembly.


Subject(s)
Respiratory Syncytial Virus, Human/ultrastructure , Viral Envelope/ultrastructure , Viral Matrix Proteins/chemistry , A549 Cells , Animals , Chlorocebus aethiops , Glycoproteins/chemistry , Humans , Protein Conformation, alpha-Helical , Respiratory Syncytial Virus, Human/chemistry , Vero Cells , Viral Envelope/chemistry
6.
Sci Rep ; 10(1): 17596, 2020 10 19.
Article in English | MEDLINE | ID: mdl-33077791

ABSTRACT

Cryo electron microscopy (cryo-EM), a key method for structure determination involves imaging purified material embedded in vitreous ice. Images are then computationally processed to obtain three-dimensional structures approaching atomic resolution. There is increasing interest in extending structural studies by cryo-EM into the cell, where biological structures and processes may be imaged in context. The limited penetrating power of electrons prevents imaging of thick specimens (> 500 nm) however. Cryo-sectioning methods employed to overcome this are technically challenging, subject to artefacts or involve specialised and costly equipment. Here we describe the first structure of herpesvirus capsids determined by sub-tomogram averaging from nuclei of eukaryotic cells, achieved by cryo-electron tomography (cryo-ET) of re-vitrified cell sections prepared using the Tokuyasu method. Our reconstructions confirm that the capsid associated tegument complex is present on capsids prior to nuclear egress. We demonstrate that this method is suited to both 3D structure determination and correlative light/electron microscopy, thus expanding the scope of cryogenic cellular imaging.


Subject(s)
Capsid/ultrastructure , Cell Nucleus/ultrastructure , Herpesvirus 1, Human/ultrastructure , Virion/ultrastructure , Animals , Cell Line , Cricetinae , Cryoelectron Microscopy , Electron Microscope Tomography
7.
Cells ; 8(2)2019 02 03.
Article in English | MEDLINE | ID: mdl-30717447

ABSTRACT

The primary envelopment/de-envelopment of Herpes viruses during nuclear exit is poorly understood. In Herpes simplex virus type-1 (HSV-1), proteins pUL31 and pUL34 are critical, while pUS3 and some others contribute; however, efficient membrane fusion may require additional host proteins. We postulated that vesicle fusion proteins present in the nuclear envelope might facilitate primary envelopment and/or de-envelopment fusion with the outer nuclear membrane. Indeed, a subpopulation of vesicle-associated membrane protein-associated protein B (VAPB), a known vesicle trafficking protein, was present in the nuclear membrane co-locating with pUL34. VAPB knockdown significantly reduced both cell-associated and supernatant virus titers. Moreover, VAPB depletion reduced cytoplasmic accumulation of virus particles and increased levels of nuclear encapsidated viral DNA. These results suggest that VAPB is an important player in the exit of primary enveloped HSV-1 virions from the nucleus. Importantly, VAPB knockdown did not alter pUL34, calnexin or GM-130 localization during infection, arguing against an indirect effect of VAPB on cellular vesicles and trafficking. Immunogold-labelling electron microscopy confirmed VAPB presence in nuclear membranes and moreover associated with primary enveloped HSV-1 particles. These data suggest that VAPB could be a cellular component of a complex that facilitates UL31/UL34/US3-mediated HSV-1 nuclear egress.


Subject(s)
Cell Nucleus/metabolism , Herpesvirus 1, Human/physiology , Membrane Fusion , Vesicular Transport Proteins/metabolism , Virus Release/physiology , Virus Replication/physiology , Animals , Cell Nucleus/ultrastructure , Chlorocebus aethiops , HeLa Cells , Herpes Simplex/metabolism , Herpes Simplex/virology , Herpesvirus 1, Human/ultrastructure , Humans , Intracellular Membranes/metabolism , Intracellular Membranes/ultrastructure , Microsomes/metabolism , Microsomes/ultrastructure , Nuclear Envelope/metabolism , Vero Cells , Viral Proteins/metabolism , Virion/metabolism , Virion/ultrastructure
8.
PLoS Biol ; 16(6): e2006191, 2018 06.
Article in English | MEDLINE | ID: mdl-29924793

ABSTRACT

Herpesviruses include many important human pathogens such as herpes simplex virus, cytomegalovirus, varicella-zoster virus, and the oncogenic Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus. Herpes virions contain a large icosahedral capsid that has a portal at a unique 5-fold vertex, similar to that seen in the tailed bacteriophages. The portal is a molecular motor through which the viral genome enters the capsid during virion morphogenesis. The genome also exits the capsid through the portal-vertex when it is injected through the nuclear pore into the nucleus of a new host cell to initiate infection. Structural investigations of the herpesvirus portal-vertex have proven challenging, owing to the small size of the tail-like portal-vertex-associated tegument (PVAT) and the presence of the tegument layer that lays between the nucleocapsid and the viral envelope, obscuring the view of the portal-vertex. Here, we show the structure of the herpes simplex virus portal-vertex at subnanometer resolution, solved by electron cryomicroscopy (cryoEM) and single-particle 3D reconstruction. This led to a number of new discoveries, including the presence of two previously unknown portal-associated structures that occupy the sites normally taken by the penton and the Ta triplex. Our data revealed that the PVAT is composed of 10 copies of the C-terminal domain of pUL25, which are uniquely arranged as two tiers of star-shaped density. Our 3D reconstruction of the portal-vertex also shows that one end of the viral genome extends outside the portal in the manner described for some bacteriophages but not previously seen in any eukaryote viruses. Finally, we show that the viral genome is consistently packed in a highly ordered left-handed spool to form concentric shells of DNA. Our data provide new insights into the structure of a molecular machine critical to the biology of an important class of human pathogens.


Subject(s)
Capsid/ultrastructure , Herpesvirus 1, Human/ultrastructure , Capsid/chemistry , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/ultrastructure , Cryoelectron Microscopy , DNA, Viral/chemistry , Genome, Viral , Herpesvirus 1, Human/chemistry , Herpesvirus 1, Human/genetics , Humans , Imaging, Three-Dimensional , Models, Biological , Models, Molecular , Molecular Motor Proteins/chemistry , Molecular Motor Proteins/genetics , Molecular Motor Proteins/ultrastructure , Virus Assembly
9.
Elife ; 62017 09 15.
Article in English | MEDLINE | ID: mdl-28915104

ABSTRACT

Rift Valley fever phlebovirus (RVFV) is a clinically and economically important pathogen increasingly likely to cause widespread epidemics. RVFV virulence depends on the interferon antagonist non-structural protein (NSs), which remains poorly characterized. We identified a stable core domain of RVFV NSs (residues 83-248), and solved its crystal structure, a novel all-helical fold organized into highly ordered fibrils. A hallmark of RVFV pathology is NSs filament formation in infected cell nuclei. Recombinant virus encoding the NSs core domain induced intranuclear filaments, suggesting it contains all essential determinants for nuclear translocation and filament formation. Mutations of key crystal fibril interface residues in viruses encoding full-length NSs completely abrogated intranuclear filament formation in infected cells. We propose the fibrillar arrangement of the NSs core domain in crystals reveals the molecular basis of assembly of this key virulence factor in cell nuclei. Our findings have important implications for fundamental understanding of RVFV virulence.


Subject(s)
Rift Valley fever virus/chemistry , Viral Nonstructural Proteins/chemistry , Active Transport, Cell Nucleus , Animals , Cell Line , Cell Nucleus/virology , Crystallography, X-Ray , DNA Mutational Analysis , Models, Molecular , Protein Conformation , Protein Multimerization , Rift Valley fever virus/genetics , Viral Nonstructural Proteins/genetics , Virulence Factors/chemistry , Virulence Factors/genetics
10.
J Gen Virol ; 97(8): 1755-1764, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27365089

ABSTRACT

Clinical isolates of influenza virus produce pleomorphic virus particles, including extremely long filamentous virions. In contrast, strains of influenza that have adapted to laboratory growth typically produce only spherical virions. As a result, the filamentous phenotype has been overlooked in most influenza virus research. Recent advances in imaging and improved animal models have highlighted the distinct structure and functional relevance of filamentous virions. In this review we summarize what is currently known about these strikingly elongated virus particles and discuss their possible roles in clinical infections.


Subject(s)
Orthomyxoviridae/physiology , Orthomyxoviridae/ultrastructure , Virus Assembly , Animals , Humans
11.
PLoS Pathog ; 9(6): e1003413, 2013.
Article in English | MEDLINE | ID: mdl-23754946

ABSTRACT

Influenza viruses exhibit striking variations in particle morphology between strains. Clinical isolates of influenza A virus have been shown to produce long filamentous particles while laboratory-adapted strains are predominantly spherical. However, the role of the filamentous phenotype in the influenza virus infectious cycle remains undetermined. We used cryo-electron tomography to conduct the first three-dimensional study of filamentous virus ultrastructure in particles budding from infected cells. Filaments were often longer than 10 microns and sometimes had bulbous heads at their leading ends, some of which contained tubules we attribute to M1 while none had recognisable ribonucleoprotein (RNP) and hence genome segments. Long filaments that did not have bulbs were infrequently seen to bear an ordered complement of RNPs at their distal ends. Imaging of purified virus also revealed diverse filament morphologies; short rods (bacilliform virions) and longer filaments. Bacilliform virions contained an ordered complement of RNPs while longer filamentous particles were narrower and mostly appeared to lack this feature, but often contained fibrillar material along their entire length. The important ultrastructural differences between these diverse classes of particles raise the possibility of distinct morphogenetic pathways and functions during the infectious process.


Subject(s)
Influenza A Virus, H3N2 Subtype/ultrastructure , Virion/ultrastructure , Animals , Cryoelectron Microscopy/methods , Dogs , Influenza A Virus, H3N2 Subtype/physiology , Madin Darby Canine Kidney Cells , Virion/physiology
12.
Biochem J ; 437(3): 565-74, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21627584

ABSTRACT

Crucial to glucose homoeostasis in humans, the hPDC (human pyruvate dehydrogenase complex) is a massive molecular machine comprising multiple copies of three distinct enzymes (E1-E3) and an accessory subunit, E3BP (E3-binding protein). Its icosahedral E2/E3BP 60-meric 'core' provides the central structural and mechanistic framework ensuring favourable E1 and E3 positioning and enzyme co-operativity. Current core models indicate either a 48E2+12E3BP or a 40E2+20E3BP subunit composition. In the present study, we demonstrate clear differences in subunit content and organization between the recombinant hPDC core (rhPDC; 40E2+20E3BP), generated under defined conditions where E3BP is produced in excess, and its native bovine (48E2+12E3BP) counterpart. The results of the present study provide a rational basis for resolving apparent differences between previous models, both obtained using rhE2/E3BP core assemblies where no account was taken of relative E2 and E3BP expression levels. Mathematical modelling predicts that an 'average' 48E2+12E3BP core arrangement allows maximum flexibility in assembly, while providing the appropriate balance of bound E1 and E3 enzymes for optimal catalytic efficiency and regulatory fine-tuning. We also show that the rhE2/E3BP and bovine E2/E3BP cores bind E3s with a 2:1 stoichiometry, and propose that mammalian PDC comprises a heterogeneous population of assemblies incorporating a network of E3 (and possibly E1) cross-bridges above the core surface.


Subject(s)
Dihydrolipoyllysine-Residue Acetyltransferase/metabolism , Animals , Cattle , Dihydrolipoyllysine-Residue Acetyltransferase/chemistry , Dihydrolipoyllysine-Residue Acetyltransferase/genetics , Escherichia coli , Models, Chemical , Protein Binding , Protein Conformation , Recombinant Proteins
13.
J Virol ; 85(12): 5840-52, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21490095

ABSTRACT

Domestic cats endure infections by all three subfamilies of the retroviridae: lentiviruses (feline immunodeficiency virus [FIV]), gammaretroviruses (feline leukemia virus [FeLV]), and spumaretroviruses (feline foamy virus [FFV]). Thus, cats present an insight into the evolution of the host-retrovirus relationship and the development of intrinsic/innate immune mechanisms. Tetherin (BST-2) is an interferon-inducible transmembrane protein that inhibits the release of enveloped viruses from infected cells. Here, we characterize the feline homologue of tetherin and assess its effects on the replication of FIV. Tetherin was expressed in many feline cell lines, and expression was induced by interferons, including alpha interferon (IFN-α), IFN-ω, and IFN-γ. Like human tetherin, feline tetherin displayed potent inhibition of FIV and HIV-1 particle release; however, this activity resisted antagonism by either HIV-1 Vpu or the FIV Env and "OrfA" proteins. Further, as overexpression of complete FIV genomes in trans could not overcome feline tetherin, these data suggest that FIV lacks a functional tetherin antagonist. However, when expressed stably in feline cell lines, tetherin did not abrogate the replication of FIV; indeed, syncytium formation was significantly enhanced in tetherin-expressing cells infected with cell culture-adapted (CD134-independent) strains of FIV (FIV Fca-F14 and FIV Pco-CoLV). Thus, while tetherin may prevent the release of nascent viral particles, cell-to-cell spread remains efficient in the presence of abundant viral receptors and tetherin upregulation may enhance syncytium formation. Accordingly, tetherin expression in vivo may promote the selective expansion of viral variants capable of more efficient cell-to-cell spread.


Subject(s)
Antigens, CD/pharmacology , GPI-Linked Proteins/pharmacology , Immunodeficiency Virus, Feline/physiology , Immunodeficiency Virus, Feline/pathogenicity , Virus Release/drug effects , Amino Acid Sequence , Animals , Antigens, CD/chemistry , Antigens, CD/drug effects , Antigens, CD/genetics , Antigens, CD/metabolism , Cats , Cell Line , Dogs , Fibroblasts/virology , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/drug effects , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Giant Cells/physiology , Humans , Immunodeficiency Virus, Feline/drug effects , Interferons/pharmacology , Mice , Molecular Sequence Data , Receptors, CXCR4/metabolism , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Virus Replication
14.
J Biomol Struct Dyn ; 23(4): 365-76, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16363873

ABSTRACT

The ubiquitously occurring chaperonins consist of a large tetradecameric Chaperonin-60, forming a cylindrical assembly, and a smaller heptameric Chaperonin-10. For a functional protein folding cycle, Chaperonin-10 caps the cylindrical Chaperonin-60 from one end forming an asymmetric complex. The oligomeric assembly of Chaperonin-10 is known to be highly plastic in nature. In Mycobacterium tuberculosis, the plasticity has been shown to be modulated by reversible binding of divalent cations. Binding of cations confers rigidity to the metal binding loop, and also promotes stability of the oligomeric structure. We have probed the conformational effects of cation binding on the Chaperonin-10 structure through fluorescence studies and molecular dynamics simulations. Fluorescence studies show that cation binding induces reduced exposure and flexibility of the dome loop. The simulations corroborate these results and further indicate a complex landscape of correlated motions between different parts of the molecule. They also show a fascinating interplay between two distantly spaced loops, the metal binding "dome loop" and the GroEL-binding "mobile loop", suggesting an important cation-mediated role in the recognition of Chaperonin-60. In the presence of cations the mobile loop appears poised to dock onto the Chaperonin-60 structure. The divalent metal ions may thus act as key elements in the protein folding cycle, and trigger a conformational switch for molecular recognition.


Subject(s)
Chaperonin 10/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Calcium/metabolism , Chaperonin 10/genetics , Chaperonin 10/metabolism , DNA, Bacterial/genetics , Models, Molecular , Mutagenesis, Site-Directed , Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Protein Binding , Protein Conformation , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spectrometry, Fluorescence , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...