Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 828665, 2022.
Article in English | MEDLINE | ID: mdl-35222412

ABSTRACT

Eukaryotic mRNA 3´-end processing is a multi-step process beginning with pre-mRNA transcript cleavage followed by poly(A) tail addition. Closely coupled to transcription termination, 3´-end processing is a critical step in the regulation of gene expression, and disruption of 3´-end processing is known to affect mature mRNA levels. Various viral proteins interfere with the 3´-end processing machinery, causing read-through transcription and altered levels of mature transcripts through inhibition of cleavage and polyadenylation. Thus, disruption of 3´-end processing contributes to widespread host shutoff, including suppression of the antiviral response. Additionally, observed features of read-through transcripts such as decreased polyadenylation, nuclear retention, and decreased translation suggest that viruses may utilize these mechanisms to modulate host protein production and dominate cellular machinery. The degree to which the effects of read-through transcript production are harnessed by viruses and host cells remains unclear, but existing research highlights the importance of host 3´-end processing modulation during viral infection.


Subject(s)
Polyadenylation , Transcription, Genetic , DNA Viruses/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Viral Proteins/metabolism
2.
PLoS One ; 16(6): e0253403, 2021.
Article in English | MEDLINE | ID: mdl-34191829

ABSTRACT

As we explore beyond Earth, astronauts may be at risk for harmful DNA damage caused by ionizing radiation. Double-strand breaks are a type of DNA damage that can be repaired by two major cellular pathways: non-homologous end joining, during which insertions or deletions may be added at the break site, and homologous recombination, in which the DNA sequence often remains unchanged. Previous work suggests that space conditions may impact the choice of DNA repair pathway, potentially compounding the risks of increased radiation exposure during space travel. However, our understanding of this problem has been limited by technical and safety concerns, which have prevented integral study of the DNA repair process in space. The CRISPR/Cas9 gene editing system offers a model for the safe and targeted generation of double-strand breaks in eukaryotes. Here we describe a CRISPR-based assay for DNA break induction and assessment of double-strand break repair pathway choice entirely in space. As necessary steps in this process, we describe the first successful genetic transformation and CRISPR/Cas9 genome editing in space. These milestones represent a significant expansion of the molecular biology toolkit onboard the International Space Station.


Subject(s)
CRISPR-Cas Systems/genetics , Cosmic Radiation/adverse effects , DNA Breaks, Double-Stranded/radiation effects , DNA Repair/radiation effects , Occupational Exposure/adverse effects , Astronauts , DNA, Fungal/genetics , DNA, Fungal/radiation effects , Gene Editing , Humans , Mutagenesis , Mutation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/radiation effects , Saccharomyces cerevisiae Proteins/genetics , Spacecraft
3.
Mol Neurobiol ; 56(12): 8435-8450, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31250383

ABSTRACT

Parkinson's disease (PD) is a multi-layered progressive neurodegenerative disease. Signature motor system impairments are accompanied by a variety of other symptoms such as mood, sleep, metabolic, and cognitive disorders. Interestingly, social cognition impairments can be observed from the earliest stages of the disease, prior to the onset of the motor symptoms. In this study, we investigated age-related reductions in sociability and social memory in the A53T mouse model of PD. Since inflammation and astrogliosis are an integral part of PD pathology and impair proper neuronal function, we examined astrogliosis and inflammation markers and parvalbumin expression in medial pre-frontal cortex (mPFC), part of the brain responsible for social cognition regulation. Finally, we used DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) for the stimulation and inhibition of orexin neuronal activity to modulate sociability and social memory in A53T mice. We observed that social cognition impairment in A53T mice is accompanied by an increase in astrogliosis and inflammation markers, in addition to loss of parvalbumin neurons and inhibitory pre-synaptic terminals in the mPFC. Moreover, DREADD-induced activation of orexin neurons restores social cognition in the A53T mouse model of PD. SIGNIFICANCE STATEMENT: Social cognition is severely affected in the early stages of Parkinson's disease. In this study, we identified the A53T mouse as a model of social cognitive impairment in PD. Observed alterations in sociability and social memory are accompanied by loss of parvalbumin positive neurons and loss of inhibitory input to mPFC. Stimulating orexin neurons using a chemogenetic approach (DREADDs) ameliorated social cognitive impairment. This study identifies a role for orexin neurons in social cognition in PD and suggests potential therapeutic targets for PD-related social cognition impairments.


Subject(s)
Memory/physiology , Neurons/metabolism , Orexins/metabolism , Parkinson Disease/genetics , Parkinson Disease/physiopathology , Social Behavior , Animals , Disease Models, Animal , Drug Design , Male , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Parvalbumins/metabolism , Prefrontal Cortex/metabolism , Synapses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...