Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Infect Genet Evol ; 4(1): 21-8, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15019586

ABSTRACT

Mycobacterium leprae, the causative agent of leprosy invades Schwann cells of the peripheral nerves leading to nerve damage and disfigurement, which is the hallmark of the disease. Wet experiments have shown that M. leprae binds to a major peripheral nerve protein, the myelin P zero (P0). This protein is specific to peripheral nerve and may be important in the initial step of M. leprae binding and invasion of Schwann cells which is the feature of leprosy. Though the receptors on Schawann cells, cytokines, chemokines and antibodies to M. leprae have been identified the molecular mechanism of nerve damage and neurodegeneration is not clearly defined. Recently pathogen and host protein/nucleotide sequence similarities (molecular mimicry) have been implicated in neurodegenerative diseases. The approach of the present study is to utilise bioinformatic tools to understand leprosy nerve damage by carrying out sequence and structural similarity searches of myelin P0 with leproma and other genomic database. Since myelin P0 is unique to peripheral nerve, its sequence and structural similarities in other neuropathogens have also been noted. Comparison of myelin P0 with the M. leprae proteins revealed two characterised proteins, Ferrodoxin NADP reductase and a conserved membrane protein, which showed similarity to the query sequence. Comparison with the entire genomic database (www.ncbi.nlm.nih.gov) by basic local alignment search tool for proteins (BLASTP) and fold classification of structure-structure alignment of proteins (FSSP) searches revealed that myelin P0 had sequence/structural similarities to the poliovirus receptor, coxsackie-adenovirus receptor, anthrax protective antigen, diphtheria toxin, herpes simplex virus, HIV gag-1 peptide, and gp120 among others. These proteins are known to be associated directly or indirectly with neruodegeneration. Sequence and structural similarities to the immunoglobin regions of myelin P0 could have implications in host-pathogen interactions, as it has homophilic adhesive properties. Although these observed similarities are not highly significant in their percentage identity, they could be functionally important in molecular mimicry, receptor binding and cell signaling events involved in neurodegeneration.


Subject(s)
Leprosy/metabolism , Membrane Proteins , Mycobacterium leprae/genetics , Myelin P0 Protein/genetics , Neurodegenerative Diseases/metabolism , Proteomics , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Computational Biology , Humans , Leprosy/microbiology , Models, Molecular , Molecular Mimicry , Molecular Sequence Data , Mycobacterium leprae/metabolism , Myelin P0 Protein/chemistry , Myelin P0 Protein/metabolism , Protein Binding , Protein Conformation , Receptors, Virus/chemistry , Receptors, Virus/metabolism
2.
s.l; s.n; 2004. 8 p. ilus, tab.
Non-conventional in English | Sec. Est. Saúde SP, HANSEN, Hanseníase Leprosy, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1242299

ABSTRACT

Mycobacterium leprae, the causative agent of leprosy invades Schwann cells of the peripheral nerves leading to nerve damage and disfigurement, which is the hallmark of the disease. Wet experiments have shown that M. leprae binds to a major peripheral nerve protein, the myelin P zero (P0). This protein is specific to peripheral nerve and may be important in the initial step of M. leprae binding and invasion of Schwann cells which is the feature of leprosy. Though the receptors on Schawann cells, cytokines, chemokines and antibodies to M. leprae have been identified the molecular mechanism of nerve damage and neurodegeneration is not clearly defined. Recently pathogen and host protein/nucleotide sequence similarities (molecular mimicry) have been implicated in neurodegenerative diseases. The approach of the present study is to utilise bioinformatic tools to understand leprosy nerve damage by carrying out sequence and structural similarity searches of myelin P0 with leproma and other genomic database. Since myelin P0 is unique to peripheral nerve, its sequence and structural similarities in other neuropathogens have also been noted. Comparison of myelin P0 with the M. leprae proteins revealed two characterised proteins, Ferrodoxin NADP reductase and a conserved membrane protein, which showed similarity to the query sequence. Comparison with the entire genomic database (www.ncbi.nlm.nih.gov) by basic local alignment search tool for proteins (BLASTP) and fold classification of structure-structure alignment of proteins (FSSP) searches revealed that myelin P0 had sequence/structural similarities to the poliovirus receptor, coxsackie-adenovirus receptor, anthrax protective antigen, diphtheria toxin, herpes simplex virus, HIV gag-1 peptide, and gp120 among others. These proteins are known to be associated directly or indirectly with neruodegeneration. Sequence and structural similarities to the immunoglobin regions of myelin P0 could have implications in host-pathogen interactions, as it has homophilic adhesive properties. Although these observed similarities are not highly significant in their percentage identity, they could be functionally important in molecular mimicry, receptor binding and cell signaling events involved in neurodegeneration.


Subject(s)
Humans , Computational Biology , Protein Conformation , Molecular Sequence Data , Neurodegenerative Diseases , Leprosy , Protein Binding , Molecular Mimicry , Models, Molecular , Mycobacterium leprae , Myelin P0 Protein , Bacterial Proteins , Membrane Proteins , Proteomics , Receptors, Virus , Amino Acid Sequence
SELECTION OF CITATIONS
SEARCH DETAIL
...