Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 86(22): 10996-1001, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25335640

ABSTRACT

A new methodology has been demonstrated for ultratrace detection of Hg(2+), working at the limit of a few tens of metal ions. Bright, red luminescent atomically precise gold clusters, Au@BSA (BSA, bovine serum albumin), coated on Nylon-6 nanofibers were used for these measurements. A green emitting fluorophore, FITC (fluorescein isothiocyanate), whose luminescence is insensitive to Hg(2+) was precoated on the fiber. Exposure to mercury quenched the red emission completely, and the green emission of the fiber appeared which was observed under dark field fluorescence microscopy. For the sensing experiment at the limit of sensitivity, we have used individual nanofibers. Quenching due to Hg(2+) ions was fast and uniform. Adaptation of such sensors to pH paper-like test-strips would make affordable water quality sensors at ultralow concentrations a reality.

2.
ACS Nano ; 8(1): 234-42, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24308315

ABSTRACT

We report an in situ Raman spectroscopic and microscopic investigation of the electrochemical unzipping of single-walled carbon nanotubes (SWNTs). Observations of the radial breathing modes (RBMs) using Raman spectral mapping reveal that metallic SWNTs are opened up rapidly followed by gradual unzipping of semiconducting SWNTs. Consideration of the resonant Raman scattering theory suggests that two metallic SWNTs with chiralities (10, 4) and (12, 0) get unzipped first at a lower electrode potential (0.36 V) followed by the gradual unzipping of another two metallic tubes, (9, 3) and (10, 1), at a relatively higher potential (1.16 V). The semiconducting SWNTs with chiralities (11, 7) and (12, 5), however, get open up gradually at ±1.66 V. A rapid decrease followed by a subsequent gradual decrease in the metallicity of the SWNT ensemble as revealed from a remarkable variation of the peak width of the G band complies well with the variations of RBM. Cyclic voltammetry also gives direct evidence for unzipping in terms of improved capacitance after oxidation followed by more important removal of oxygen functionalities during the reduction step, as reflected in subtle changes of the morphology confirming the formation of graphene nanoribbons. The density functional-based tight binding calculations show additional dependence of chirality and diameter of nanotubes on the epoxide binding energies, which is in agreement with the Raman spectroscopic results and suggests a possible mechanism of unzipping determined by combined effects of the structural characteristics of SWNTs and applied field.

SELECTION OF CITATIONS
SEARCH DETAIL
...