Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 14(20): 4194-4203, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29744515

ABSTRACT

The glassiness of polymer melts is generally considered to be suppressed by small dimensions, added solvent, and heat. Here, we suggest that glassiness persists at the nanoscale in worm-like micelles composed of amphiphilic diblock copolymers of poly(ethylene oxide)-polystyrene (PS). The glassiness of these worms is indicated by a lack of fluorescence recovery after photobleaching as well as micron-length rigid segments separated by hinges. The coarse-grained molecular dynamics studies probe the dynamics of the PS in these glassy worms. Addition of an organic solvent promotes a transition from hinged to fully flexible worms and to spheres or vesicles. Simulation demonstrates two populations of organic solvent in the core of the micelle-a solvent 'pool' in the micelle core and a second population that accumulates at the interface between the core and the corona. The stable heterogeneity of the residual solvent could explain the unusual hinged rigidity, but solvent removal during shear-extension could be more effective and yield - as observed - nearly straight worms without hinges.

2.
ACS Sens ; 3(3): 561-568, 2018 03 23.
Article in English | MEDLINE | ID: mdl-29488377

ABSTRACT

We demonstrated a proof-of-principle concept of a label-free platform that enables nucleic acid sequencing by binding methodology. The system utilizes gold surfaces having high fidelity plasmonic nanohole arrays which are very sensitive to minute changes of local refractive indices. Our novel surface chemistry approach ensures accurate identification of correct bases at individual positions along a targeted DNA sequence on the gold surface. Binding of the correct base on the gold sensing surface triggers strong spectral variations within the nanohole optical response, which provides a high signal-to-noise ratio and accurate sequence data. Integrating our label-free sequencing platform with a lens-free imaging-based device, we reliably determined targeted DNA sequences by monitoring the changes within the plasmonic diffraction images. Consequently, this new label-free surface chemistry technique, integrated with plasmonic lens-free imaging platform, will enable monitoring multiple biomolecular binding events, which could initiate new avenues for high-throughput nucleic acid sequencing.


Subject(s)
DNA/analysis , DNA/genetics , Sequence Analysis, DNA/instrumentation , Sequence Analysis, DNA/methods , Gold/chemistry , Surface Properties
3.
Nat Genet ; 46(12): 1343-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25326703

ABSTRACT

Haplotype-resolved genome sequencing enables the accurate interpretation of medically relevant genetic variation, deep inferences regarding population history and non-invasive prediction of fetal genomes. We describe an approach for genome-wide haplotyping based on contiguity-preserving transposition (CPT-seq) and combinatorial indexing. Tn5 transposition is used to modify DNA with adaptor and index sequences while preserving contiguity. After DNA dilution and compartmentalization, the transposase is removed, resolving the DNA into individually indexed libraries. The libraries in each compartment, enriched for neighboring genomic elements, are further indexed via PCR. Combinatorial 96-plex indexing at both the transposition and PCR stage enables the construction of phased synthetic reads from each of the nearly 10,000 'virtual compartments'. We demonstrate the feasibility of this method by assembling >95% of the heterozygous variants in a human genome into long, accurate haplotype blocks (N50 = 1.4-2.3 Mb). The rapid, scalable and cost-effective workflow could enable haplotype resolution to become routine in human genome sequencing.


Subject(s)
Haplotypes , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Algorithms , Chromosome Mapping , Cluster Analysis , DNA/genetics , Female , Gene Library , Genome, Human , Genomics , Heterozygote , Humans , Male , Polymerase Chain Reaction , Reproducibility of Results , Transposases/genetics
4.
Pharm Res ; 24(11): 2099-109, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17564817

ABSTRACT

PURPOSE: Worm-like and spherical micelles are both prepared here from the same amphiphilic diblock copolymer, poly(ethylene oxide)-b-poly (epsilon-caprolactone) (PEO [5 kDa]-PCL [6.5 kDa]) in order to compare loading and delivery of hydrophobic drugs. MATERIALS AND METHODS: Worm-like micelles of this degradable copolymer are nanometers in cross-section and spontaneously assemble to stable lengths of microns, resembling filoviruses in some respects and thus suggesting the moniker 'filomicelles'. The highly flexible worm-like micelles can also be sonicated to generate kinetically stable spherical micelles composed of the same copolymer. RESULTS: The fission process exploits the finding that the PCL cores are fluid, rather than glassy or crystalline, and core-loading of the hydrophobic anticancer drug delivery, paclitaxel (TAX) shows that the worm-like micelles load and solubilize twice as much drug as spherical micelles. In cytotoxicity tests that compare to the clinically prevalent solubilizer, Cremophor EL, both micellar carriers are far less toxic, and both types of TAX-loaded micelles also show fivefold greater anticancer activity on A549 human lung cancer cells. CONCLUSION: PEO-PCL based worm-like filomicelles appear to be promising pharmaceutical nanocarriers with improved solubilization efficiency and comparable stability to spherical micelles, as well as better safety and efficacy in vitro compared to the prevalent Cremophor EL TAX formulation.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Drug Delivery Systems , Micelles , Paclitaxel/administration & dosage , Polyesters/administration & dosage , Cell Line, Tumor , Drug Stability , Humans , Paclitaxel/chemistry , Paclitaxel/pharmacology , Solubility
5.
J Phys Chem B ; 110(8): 3831-4, 2006 Mar 02.
Article in English | MEDLINE | ID: mdl-16494443

ABSTRACT

Manipulation of diblock copolymer worm micelles by external electric fields is visualized by fluorescence microscopy in dilute, aqueous solution. Hydrodynamic coupling of the poly(acrylic acid)-(1,4)-polybutadiene (PAA-PBD) worm motion to the electric field and the effective stiffening of the worms in an oscillating electric field are demonstrated. A brief discussion on using this technique to estimate the rheological properties of wormlike micelles is presented.


Subject(s)
Butadienes/chemistry , Elastomers/chemistry , Electromagnetic Fields , Micelles , Polymers/chemistry , Polymethacrylic Acids/chemistry , Water/chemistry , Microscopy, Fluorescence , Rheology , Surface Properties , Surface-Active Agents/chemistry
6.
J Phys Chem B ; 109(30): 14356-64, 2005 Aug 04.
Article in English | MEDLINE | ID: mdl-16852806

ABSTRACT

Alamethicin is a well-studied channel-forming peptide that has a prototypical amphipathic helix structure. It permeabilizes both microbial and mammalian cell membranes, causing loss of membrane polarization and leakage of endogenous contents. Antimicrobial peptide-lipid systems have been studied quite extensively and have led to significant advancements in membrane biophysics. These studies have been performed on lipid bilayers that are generally charged or zwitterionic and restricted to a thickness range of 3-5 nm. Bilayers of amphiphilic diblock copolymers are a relatively new class of membranes that can have significantly different physicochemical properties compared with those of lipid membranes. In particular, they can be made uncharged, nonzwitterionic, and much thicker than their lipid counterparts. In an effort to extend studies of membrane-protein interactions to these synthetic membranes, we have characterized the interactions of alamethicin and several other membrane-active peptides with diblock copolymer bilayers. We find that although alamethicin is too small to span the bilayer, the peptide interacts with, and ruptures, thick polymer membranes.


Subject(s)
Alamethicin/chemistry , Water/chemistry , Circular Dichroism , Fluoresceins/chemistry , Hydrophobic and Hydrophilic Interactions , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...