Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-36748982

ABSTRACT

Ultra-thin graphene-based membranes have shown significant promise for high-performance nano-electro-mechanical (NEMS) devices. The key challenge in the modeling of such membranes is that they often operate in deflection regimes where the assumptions or approximations of "pure bending" or "pure stretching" are not satisfied. We present a model of graphene-polymer heterostructure (GPH) NEMS membranes based on Föppl-von Kármán (FvK) equations which take into account both bending and stretching forces. The experimental GPH membrane shape obtained through atomic force microscopy topography mapping is compared to the inflation shapes predicted by FvK-based finite element method simulation, and they show excellent agreement with each other. When the GPH membranes are deflected under pressure in a capacitive pressure sensor configuration, the effectiveness of this model is further exemplified through accurately predicting the capacitance change of deflecting GPH membrane devices at varying pressures. This model serves as a powerful new tool in the design and development of graphene-based NEMS devices, being able to predict the performance of graphene NEMS devices or to aid in the design of device geometries to match required performances.

2.
ACS Appl Nano Mater ; 5(12): 17969-17976, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36583124

ABSTRACT

Advanced nanoelectromechanical systems made from polymer dielectrics deposited onto 2D-nanomaterials such as graphene are increasingly popular as pressure and touch sensors, resonant sensors, and capacitive micromachined ultrasound transducers (CMUTs). However, durability and accuracy of layered nanocomposites depend on the mechanical stability of the interface between polymer and graphene layers. Here we used molecular dynamics computer simulations to investigate the interface between a sheet of graphene and a layer of parylene-C thermoplastic polymer during large numbers of high-frequency (MHz) cycles of bending relevant to the operating regime. We find that important interfacial sliding occurs almost immediately in usage conditions, resulting in more than 2% expansion of the membrane, a detrimental mechanism which requires repeated calibration to maintain CMUTs accuracy. This irreversible mechanism is caused by relaxation of residual internal stresses in the nanocomposite bilayer, leading to the emergence of self-equilibrated tension in the polymer and compression in the graphene. It arises as a result of deposition-polymerization processing conditions. Our findings demonstrate the need for particular care to be exercised in overcoming initial expansion. The selection of appropriate materials chemistry including low electrostatic interactions will also be key to their successful application as durable and reliable devices.

3.
Acta Biomater ; 143: 145-158, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35196554

ABSTRACT

Extracellular pH can have a profound effect on cell metabolism, gene and protein expression. Nucleus pulposus (NP) cells, for example, under acidic conditions accelerate the production of degradative enzymes and pro-inflammatory cytokines, leading ultimately to intervertebral disc degeneration, a major cause of back pain. Self-assembling peptide hydrogels constitute a well-established class of biomaterials that could be exploited as pH-tunable platform to investigate cell behaviour under normal and non-physiological pH. In this paper we formulated acidic (pH = 4) and basic (pH = 9) hydrogels, from the same octapeptide FEFKFEFK (F8) (F = phenyalanine, E = glutamic acid, K = lysine), to test the effect of non-physiological pH on encapsulated NP cells. Similarly, graphene oxide-containing F8 hydrogels (GO-F8) were formulated as stiffer analogues. Acidic and basic hydrogels showed peculiar morphologies and rheological properties, with all systems able to buffer within 30 minutes of exposure to cell culture media. NP cells seeded in acidic F8 hydrogels showed a more catabolic phenotype compared to basic hydrogels, with increased gene expression of degradative enzymes (MMP-3, ADAMTS-4), neurotrophic factors (NGF and BDNF) and NF-κB p65 phosphorylation. Acidic GO-F8 hydrogels also induced a catabolic response, although milder than basic counterparts and with the highest gene expression of characteristic NP-matrix components, aggrecan and collagen II. In all systems, the cellular response had a peak within 3 days of encapsulation, thereafter decreasing over 7 days, suggesting a 'transitory' effect of hydrogel pH on encapsulated cells. This work gives an insight on the effect of pH (and pH buffering) on encapsulated NP cells and offers new designs of low and high pH peptide hydrogels for 3D cell culture studies. STATEMENT OF SIGNIFICANCE: We have recently shown the potential of graphene oxide - self-assembling peptide hybrid hydrogels for NP cell culture and regeneration. Alongside cell carrier, self-assembling peptide hydrogels actually provide a versatile pH-tunable platform for biological studies. In this work we decided to explore the effect of non-physiological pH (and pH buffering) on encapsulated NP cells. Our approach allows the formulation of both acidic and basic hydrogels, starting from the same peptide sequence. We showed that the initial pH of the scaffold does not affect significantly cell response to encapsulation, but the presence of GO results in lower inflammatory levels and higher NP matrix protein production. This platform could be exploited to study the effect of pH on different cell types whose behaviour can be pH-dependent.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Graphite , Humans , Hydrogels/chemistry , Intervertebral Disc Degeneration/metabolism , Peptides/chemistry
4.
Nanoscale ; 13(21): 9505-9540, 2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34037053

ABSTRACT

Water-based elastomers (WBEs) are polymeric elastomers in aqueous systems. WBEs have recently continued to gain wide acceptability by both academia and industry due to their remarkable environmental and occupational safety friendly nature, as a non-toxic elastomeric dispersion with low-to-zero volatile organic compound (VOC) emission. However, their inherent poor mechanical and thermal properties remain a drawback to these sets of elastomers. Hence, nano-fillers such as graphene oxide (GO), reduced graphene oxide (rGO) and graphene nanoplatelets (GNPs) are being employed for the reinforcement and enhancement of this set of elastomers. This work is geared towards a critical review and summation of the state-of-the-art developments of graphene enhanced water-based elastomer composites (G-WBEC), including graphene and composite production processes, properties, characterisation techniques and potential commercial applications. The dominant production techniques, such as emulsion mixing and in situ polymerisation processes, which include Pickering emulsion, mini-emulsion and micro-emulsion, as well as ball-milling approach, are systematically evaluated. Details of the account of mechanical properties, electrical conductivity, thermal stability and thermal conductivity enhancements, as well as multifunctional properties of G-WBEC are discussed, with further elaboration on the structure-property relationship effects (such as dispersion and filler-matrix interface) through effective and non-destructive characterisation tools like Raman and XRD, among others. The paper also evaluates details of the current application attempts and potential commercial opportunities for G-WBEC utilisation in aerospace, automotive, oil and gas, biomedicals, textiles, sensors, electronics, solar energy, and thermal management.

5.
Adv Biol (Weinh) ; 5(4): e2000271, 2021 04.
Article in English | MEDLINE | ID: mdl-33852181

ABSTRACT

Mesenchymal stromal cells from adipose tissue (AD-MSCs) exhibit favorable clinical traits for autologous transplantation and can develop 'Schwann-like' phenotypes (sAD-MSCs) to improve peripheral nerve regeneration, where severe injuries yield insufficient recovery. However, sAD-MSCs regress without biochemical stimulation and detach from conduits under unfavorable transplant conditions, negating their paracrine effects. Graphene-derived materials support AD-MSC attachment, regulating cell adhesion and function through physiochemistry and topography. Graphene oxide (GO) is a suitable substrate for human sAD-MSCs incubation toward severe peripheral nerve injuries by evaluating transcriptome changes, neurotrophic factor expression over a 7-days period, and cell viability in apoptotic conditions is reported. Transcriptome changes from GO incubation across four patients are minor compared to biological variance. Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial-derived neurotrophic factor (GDNF) gene expression is unchanged from sAD-MSCs on GO substrates, but NGF and GDNF protein secretion increase at day 3 and 7. Secretome changes do not improve dorsal root ganglia neuron axon regeneration in conditioned media culture models. Fewer sAD-MSCs detach from GO substrates compared to glass following phosphate buffer saline exposure, which simulates apoptotic conditions. Overall, GO substrates are compatible with sAD-MSC primed for peripheral nerve regeneration strategies and protect the cell population in harsh environments.


Subject(s)
Graphite , Mesenchymal Stem Cells , Adipose Tissue , Axons , Humans , Nerve Regeneration
6.
Acta Biomater ; 127: 116-130, 2021 06.
Article in English | MEDLINE | ID: mdl-33831573

ABSTRACT

Intervertebral disc (IVD) degeneration is a process that starts in the central nucleus pulposus (NP) and leads to inflammation, extracellular matrix (ECM) degradation, and progressive loss of disc height. Early treatment of IVD degeneration is critical to the reduction of low back pain and related disability. As such, minimally invasive therapeutic approaches that can halt and reverse NP degeneration at the early stages of the disease are needed. Recently, we developed an injectable graphene oxide (GO) - self-assembling peptide FEFKFEFK (F: phenylalanine; K: lysine; E: glutamic acid) hybrid hydrogels as potential delivery platform for cells and/or drugs in the NP. In this current study, we explored the possibility of using the GO present in these hybrid hydrogels as a vehicle for the sequestration and controlled delivery of transforming growth factor beta-3 (TGF-ß3), an anabolic growth factor (GF) known to direct NP cell fate and function. For this purpose, we first investigated the potential of GO to bind and sequestrate TGF-ß3. We then cultured bovine NP cells in the new functional scaffolds and investigated their response to the presence of GO and TGF-ß3. Our results clearly showed that GO flakes can sequestrate TGF-ß3 through strong binding interactions resulting in a slow and prolonged release, with the GF remaining active even when bound to the GO flakes. The adsorption of the GF on the GO flakes to create TGF-ß3-loaded GO flakes and their subsequent incorporation in the hydrogels through mixing, [(GO/TGF-ß3Ads)-F8] hydrogel, led to the upregulation of NP-specific genes, accompanied by the production and deposition of an NP-like ECM, rich in aggrecan and collagen II. NP cells actively interacted with TGF-ß3-loaded GO flakes and remodeled the scaffolds through endocytosis. This work highlights the potential of using GO as a nanocarrier for the design of functional hybrid peptide-based hydrogels. STATEMENT OF SIGNIFICANCE: Intervertebral disc (IVD) degeneration is a process that starts in the central nucleus pulposus (NP) and leads to inflammation, extracellular matrix (ECM) degradation, and progressive loss of disc height. As such, minimally invasive therapeutic approaches that can halt and reverse NP degeneration at the early stages of the disease are needed. In this current study, we explored the possibility of using peptide - GO hybrid hydrogels as a vehicle for the sequestration and controlled delivery of transforming growth factor beta-3 (TGF-ß3), an anabolic growth factor (GF) known to direct NP cell fate and function.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Animals , Cattle , Extracellular Matrix , Graphite , Hydrogels/pharmacology , Intervertebral Disc Degeneration/therapy , Peptides/pharmacology , Regeneration , Transforming Growth Factor beta3
7.
Anal Chim Acta ; 1156: 338329, 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33781458

ABSTRACT

The interaction of biomolecules, such as proteins, with biomaterial surfaces is key to disease diagnostic and therapeutic development applications. There is a significant need for rapid, low-cost, field-serviceable instruments to monitor such interactions, where open-source tools can help to improve the accessibility to disease screening instruments especially in low- and middle-income countries. We have developed and evaluated a low-cost integrated quartz crystal microbalance (QCM) instrument for biomolecular analysis based on an open-source QCM device. The custom QCM instrument was equipped with a custom-made electronically controlled isothermal chamber with a closed-loop control routine. A thermal coefficient of 5.6 ppm/°C was obtained from a series of evaluations of the implemented control. Additionally, a custom-designed data acquisition system and a mathematical processing and analysis tool is implemented. The quartz crystal detection chips used here incorporate gold and reduced graphene oxide (rGO) coated surfaces. We demonstrate the system capability to monitor and record the biomolecular interaction between a typical protein bovine serum albumin (BSA) and these two substrates. This instrument was compared to a commercial QCM, demonstrating good correspondence between the computed mass adsorption density responses using the Sauerbrey model. For both Au and rGO surfaces, the custom QCM significantly outperforms the commercial system in limit of detection, sensitivity and linear range. The instrument presented here has the potential to serve as a ubiquitous bioelectronic tool for point-of-care disease screening and rapid therapeutics development.


Subject(s)
Biosensing Techniques , Graphite , Adsorption , Animals , Cattle , Gold , Quartz , Quartz Crystal Microbalance Techniques , Surface Properties
8.
Nanotechnology ; 32(5): 055101, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33059341

ABSTRACT

Graphene and its derivatives have shown fascinating potential in biomedical applications. However, the biocompatibility of graphene with vascular smooth muscle cells (VSMCs) and applications to vascular engineering have not been explored extensively. Using a rat aortic smooth muscle cell line, A7r5, as a VSMC model, we have explored the effects of graphene oxide (GO) on the growth and behaviours of VSMCs. Results demonstrated that GO had no obvious toxicity to VSMCs. Cells cultured on GO retained the expression of smooth muscle cell-specific markers CNN1, ACTA2 and SMTN, on both mRNA and protein levels. A wound healing assay demonstrated no effect of GO on cell migration. We also found that small-flaked GO favoured the proliferation of VSMCs, suggesting a potential of using surface chemistry or physical properties of GO to influence cell growth behaviour. These results provide insight into the suitability of GO as a scaffold for vascular tissue engineering.


Subject(s)
Biocompatible Materials/pharmacology , Graphite/pharmacology , Muscle, Smooth, Vascular/drug effects , Animals , Biomarkers/metabolism , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Materials Testing , Models, Biological , Rats
9.
ACS Sens ; 5(11): 3520-3532, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33103441

ABSTRACT

We present a sensitive and low-cost immunoassay, based on a customized open-source quartz crystal microbalance coupled with graphene biointerface sensors (G-QCM), to quantify antibodies in undiluted patient serum. We demonstrate its efficacy for a specific antibody against the phospholipase A2 receptor (anti-PLA2R), which is a biomarker in primary membranous nephropathy. A novel graphene-protein biointerface was constructed by adsorbing a low concentration of denatured bovine serum albumin (dBSA) on the reduced graphene oxide (rGO) sensor surface. The dBSA film prevents the denaturation of the protein receptor on the rGO surface and serves as the cross-linker for immobilization of the receptor for anti-PLA2R antibodies on the surface. The detection limit and selectivity of this G-QCM biosensor was compared with a commercial QCM system. The G-QCM immunoassay exhibited good specificity and high sensitivity toward the target, with an order of magnitude better detection limit (of 100 ng/mL) compared to the commercial system, at a fraction of the cost and with considerable time saving. The results obtained from patient sera compared favorably with those from enzyme-linked immunosorbent assay, validating the feasibility of use in clinical applications. The multifunctional dBSA-rGO platform provides a promising biofunctionalization method for universal immunoassay and biosensors. With the advantages of inexpensive, rapid, and sensitive detection, the G-QCM sensor and instrument form an effective autoimmune disease screening tool.


Subject(s)
Biosensing Techniques , Graphite , Humans , Immunoassay , Point-of-Care Systems , Quartz Crystal Microbalance Techniques
10.
ACS Omega ; 4(1): 1969-1981, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-31459448

ABSTRACT

This study presents preliminary experimental data suggesting that sodium 4-(pyrene-1-yl)butane-1-sulfonate (PBSA), 5, an analogue of sodium pyrene-1-sulfonate (PSA), 1, enhances the stability of aqueous reduced graphene oxide (RGO) graphene dispersions. We find that RGO and exfoliated graphene dispersions prepared in the presence of 5 are approximately double the concentration of those made with commercially available PSA, 1. Quantum mechanical and molecular dynamics simulations provide key insights into the behavior of these molecules on the graphene surface. The seemingly obvious introduction of a polar sulfonate head group linked via an appropriate alkyl spacer to the aromatic core results in both more efficient binding of 5 to the graphene surface and more efficient solvation of the polar head group by bulk solvent (water). Overall, this improves the stabilization of the graphene flakes by disfavoring dissociation of the stabilizer from the graphene surface and inhibiting reaggregation by electrostatic and steric repulsion. These insights are currently the subject of further investigations in an attempt to develop a rational approach to the design of more effective dispersing agents for rGO and graphene in aqueous solution.

11.
Acta Biomater ; 92: 92-103, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31091473

ABSTRACT

Cell-based therapies have shown significant promise in tissue engineering with one key challenge being the delivery and retention of cells. As a result, significant efforts have been made in the past decade to design injectable biomaterials to host and deliver cells at injury sites. Intervertebral disc (IVD) degeneration, a major cause of back pain, is a particularly relevant example where a minimally-invasive cellular therapy could bring significant benefits specifically at the early stages of the disease, when a cell-driven process starts in the gelatinous core of the IVD, the nucleus pulposus (NP). In this present study we explore the use of graphene oxide (GO) as nano-filler for the reinforcement of FEFKFEFK (ß-sheet forming self-assembling peptide) hydrogels. Our results confirm the presence of strong interactions between FEFKFEFK and GO flakes with the peptide coating and forming short thin fibrils on the surface of the flakes. These strong interactions were found to affect the bulk properties of hybrid hydrogels. At pH 4 electrostatic interactions between the peptide fibres and the peptide-coated GO flakes are thought to govern the final bulk properties of the hydrogels while at pH 7, after conditioning with cell culture media, electrostatic interactions are removed leaving the hydrophobic interactions to govern hydrogel final properties. The GO-F820 hybrid hydrogel, with mechanical properties similar to the NP, was shown to promote high cell viability and retained cell metabolic activity in 3D over the 7 days of culture and therefore shown to harbour significant potential as an injectable hydrogel scaffold for the in-vivo delivery of NP cells. STATEMENT OF SIGNIFICANCE: Short self-assembling peptide hydrogels (SAPHs) have attracted significant interest in recent years as they can mimic the natural extra-cellular matrix, holding significant promise for the ab initio design of cells' microenvironments. Recently the design of hybrid hydrogels for biomedical applications has been explored through the incorporation of specific nanofillers. In this study we exploited graphene oxide (GO) as nanofiller to design hybrid injectable 3Dscaffolds for the delivery of nucleus pulposus cells (NPCs) for intervertebral disc regeneration. Our work clearly shows the presence of strong interactions between peptide and GO, mimicking the mechanical properties of the NP tissue and promoting high cell viability and metabolic activity. These hybrid hydrogels therefore harbour significant potential as injectable scaffolds for the in vivo delivery of NPCs.


Subject(s)
Graphite/chemistry , Hydrogels/chemistry , Injections , Intervertebral Disc/physiology , Peptides/chemistry , Regeneration/physiology , Tissue Engineering/methods , Amino Acid Sequence , Animals , Cattle , Cell Survival
12.
J Phys Chem C Nanomater Interfaces ; 123(16): 10578-10585, 2019 Apr 25.
Article in English | MEDLINE | ID: mdl-32064011

ABSTRACT

Surface-enhanced Raman scattering (SERS) and resonant Raman scattering are widely used techniques to enhance the Raman intensity of molecules and nanomaterials by several orders of magnitude. In SERS, typically, molecules are investigated and their intrinsic resonance is often ignored while discussing the plasmonic enhancement. Here, we study α-sexithiophenes encapsulated in carbon nanotubes placed in the center of a nanodimer. By dielectrophoretic deposition, we place the nanotubes precisely in the center of a plasmonic gold nanodimer and observe SERS enhancement from individual tube bundles. The encapsulated molecules are not subjected to chemical enhancement because of the protective character of the nanotube. Polarization-dependent Raman measurements confirm the alignment of the molecules within the carbon nanotubes (CNTs) and reveal the influence of the plasmonic near field on the molecule's Raman intensity. We investigate the encapsulated molecules in small CNT bundles with and without plasmonic enhancement and determine the molecular and plasmonic resonance by tuning the excitation wavelength. We observe a strong red shift of the maximum Raman intensity under plasmonic enhancement toward the plasmon resonance.

13.
Beilstein J Nanotechnol ; 9: 2936-2946, 2018.
Article in English | MEDLINE | ID: mdl-30546990

ABSTRACT

Nanostructured systems, such as nanocomposites, are potential materials for usage in different fields since synergistic effects of their components at the nanoscale domain may improve physical/chemical properties when compared to individual phases. We report here the preparation and characterisation of a new nanocomposite composed of polyaniline (PANI), reduced graphene oxide (rGO) and hexaniobate (hexNb) nanoscrolls. Atomic force microscopy images show an interesting architecture of rGO flakes coated with PANI and decorated by hexNb. Such features are attributed to the high stability of the rGO flakes prepared at room temperature. Detailed characterisation by X-ray photoelectron and Raman spectroscopies indicates an intermediate reduction degree for the rGO component and high doping degree of the PANI chains compared to the neat polymer. The latter feature can be attributed to cooperative effects of PANI chains with rGO flakes and hexNb nanoscrolls, which promote conformational changes of the polymer backbone (secondary doping). Spectroscopic and electrochemistry data indicate a synergetic effect on the ternary nanocomposite, which is attributed to interactions between the components resulting from the morphological aspects. Therefore, the new nanocomposite presents promising properties for development of new materials in the film form on substrates for sensing or corrosion protection for example.

14.
Nanotechnology ; 29(46): 465710, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30251709

ABSTRACT

We present a two-step procedure to probe hotspots of plasmon-enhanced Raman scattering with carbon nanotubes (CNTs). Dielectrophoretic deposition places a small CNT bundle on top of a plasmonic Au nanodimer. After 'pre-characterizing' both the nanotubes and dimer structure, we subsequently use the tip of an atomic force microscope to push the bundle into the plasmonic hotspot located in the 25 nm wide dimer gap, characterize its location inside the gap, and observe the onset of plasmon-enhanced Raman scattering. Evidence for the activation of the CNT's double-resonant D-mode by the near-field of the plasmonic hotspot is discussed.

15.
Interface Focus ; 8(3): 20180002, 2018 Jun 06.
Article in English | MEDLINE | ID: mdl-29696095

ABSTRACT

There is urgent need to improve the clinical outcome of peripheral nerve injury. Many efforts are directed towards the fabrication of bioengineered conduits, which could deliver stem cells to the site of injury to promote and guide peripheral nerve regeneration. The aim of this study is to assess whether graphene and related nanomaterials can be useful in the fabrication of such conduits. A comparison is made between graphene oxide (GO) and reduced GO substrates. Our results show that the graphene substrates are highly biocompatible, and the reduced GO substrates are more effective in increasing the gene expression of the biomolecules involved in the regeneration process compared to the other substrates studied.

16.
Biomacromolecules ; 19(7): 2731-2741, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29672029

ABSTRACT

A recent strategy that has emerged for the design of increasingly functional hydrogels is the incorporation of nanofillers in order to exploit their specific properties to either modify the performance of the hydrogel or add functionality. The emergence of carbon nanomaterials in particular has provided great opportunity for the use of graphene derivatives (GDs) in biomedical applications. The key challenge when designing hybrid materials is the understanding of the molecular interactions between the matrix (peptide nanofibers) and the nanofiller (here GDs) and how these affect the final properties of the bulk material. For the purpose of this work, three gelling ß-sheet-forming, self-assembling peptides with varying physiochemical properties and five GDs with varying surface chemistries were chosen to formulate novel hybrid hydrogels. First the peptide hydrogels and the GDs were characterized; subsequently, the molecular interaction between peptides nanofibers and GDs were probed before formulating and mechanically characterizing the hybrid hydrogels. We show how the interplay between electrostatic interactions, which can be attractive or repulsive, and hydrophobic (and π-π in the case of peptide containing phenylalanine) interactions, which are always attractive, play a key role on the final properties of the hybrid hydrogels. The shear modulus of the hydrid hydrogels is shown to be related to the strength of fiber adhesion to the flakes, the overall hydrophobicity of the peptides, as well as the type of fibrillar network formed. Finally, the cytotoxicity of the hybrid hydrogel formed at pH 6 was also investigated by encapsulating and culturing human mesemchymal stem cells (hMSC) over 14 days. This work clearly shows how interactions between peptides and GDs can be used to tailor the mechanical properties of the resulting hydrogels, allowing the incorporation of GD nanofillers in a controlled way and opening the possibility to exploit their intrinsic properties to design novel hybrid peptide hydrogels for biomedical applications.


Subject(s)
Graphite/chemistry , Hydrogels/chemical synthesis , Peptides/chemistry , Cell Line , Humans , Hydrogels/pharmacology , Hydrophobic and Hydrophilic Interactions , Mesenchymal Stem Cells/drug effects , Nanofibers/chemistry , Static Electricity
17.
Nanoscale ; 9(44): 17439-17449, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29105718

ABSTRACT

We describe the fabrication and characterisation of a capacitive pressure sensor formed by an ultra-thin graphene-polymer heterostructure membrane spanning a large array of micro-cavities each up to 30 µm in diameter with 100% yield. Sensors covering an area of just 1 mm2 show reproducible pressure transduction under static and dynamic loading up to pressures of 250 kPa. The measured capacitance change in response to pressure is in good agreement with calculations. Further, we demonstrate high-sensitivity pressure sensors by applying a novel strained membrane transfer and optimising the sensor architecture. This method enables suspended structures with less than 50 nm of air dielectric gap, giving a pressure sensitivity of 123 aF Pa-1 mm-2 over a pressure range of 0 to 100 kPa.

18.
Nanoscale Res Lett ; 12(1): 600, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29168000

ABSTRACT

We present a Raman mapping study of monolayer graphene G and 2D bands, after integration on silicon strip-waveguide-based micro-ring resonators (MRRs) to characterize the effects of the graphene transfer processes on its structural and optoelectronic properties. Analysis of the Raman G and 2D peak positions and relative intensities reveal that the graphene is electrically intrinsic where it is suspended over the MRR but is moderately hole-doped where it sits on top of the waveguide structure. This is suggestive of Fermi level 'pinning' at the graphene-silicon heterogeneous interface, and we estimate that the Fermi level shifts down by approximately 0.2 eV from its intrinsic value, with a corresponding peak hole concentration of ~ 3 × 1012 cm-2. We attribute variations in observed G peak asymmetry to a combination of a 'stiffening' of the E 2g optical phonon where the graphene is supported by the underlying MRR waveguide structure, as a result of this increased hole concentration, and a lowering of the degeneracy of the same mode as a result of localized out-of-plane 'wrinkling' (curvature effect), where the graphene is suspended. Examination of graphene integrated with two different MRR devices, one with radii of curvature r = 10 µm and the other with r = 20 µm, indicates that the device geometry has no measureable effect on the level of doping.

19.
Faraday Discuss ; 205: 85-103, 2017 12 04.
Article in English | MEDLINE | ID: mdl-28914310

ABSTRACT

We isolated the plasmonic contribution to surface-enhanced Raman scattering (SERS) and found it to be much stronger than expected. Organic dyes encapsulated in single-walled carbon nanotubes are ideal probes for quantifying plasmonic enhancement in a Raman experiment. The molecules are chemically protected through the nanotube wall and spatially isolated from the metal, which prevents enhancement by chemical means and through surface roughness. The tubes carry molecules into SERS hotspots, thereby defining molecular position and making it accessible for structural characterization with atomic-force and electron microscopy. We measured a SERS enhancement factor of 106 on α-sexithiophene (6T) molecules in the gap of a plasmonic nanodimer. This is two orders of magnitude stronger than predicted by the electromagnetic enhancement theory (104). We discuss various phenomena that may explain the discrepancy (including hybridization, static and dynamic charge transfer, surface roughness, uncertainties in molecular position and orientation), but found all of them lacking in enhancement for our probe system. We suggest that plasmonic enhancement in SERS is, in fact, much stronger than currently anticipated. We discuss novel approaches for treating SERS quantum mechanically that appear promising for predicting correct enhancement factors. Our findings have important consequences on the understanding of SERS as well as for designing and optimizing plasmonic substrates.

20.
ACS Nano ; 11(2): 1613-1625, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28165704

ABSTRACT

Supported phospholipid membrane patches stabilized on graphene surfaces have shown potential in sensor device functionalization, including biosensors and biocatalysis. Lipid dip-pen nanolithography (L-DPN) is a method useful in generating supported membrane structures that maintain lipid functionality, such as exhibiting specific interactions with protein molecules. Here, we have integrated L-DPN, atomic force microscopy, and coarse-grained molecular dynamics simulation methods to characterize the molecular properties of supported lipid membranes (SLMs) on graphene and graphene oxide supports. We observed substantial differences in the topologies of the stabilized lipid structures depending on the nature of the surface (polar graphene oxide vs nonpolar graphene). Furthermore, the addition of water to SLM systems resulted in large-scale reorganization of the lipid structures, with measurable effects on lipid lateral mobility within the supported membranes. We also observed reduced lipid ordering within the supported structures relative to free-standing lipid bilayers, attributed to the strong hydrophobic interactions between the lipids and support. Together, our results provide insight into the molecular effects of graphene and graphene oxide surfaces on lipid bilayer membranes. This will be important in the design of these surfaces for applications such as biosensor devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...