Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 150: 106179, 2022 11.
Article in English | MEDLINE | ID: mdl-36252367

ABSTRACT

Cytopathologists examine microscopic images obtained at various magnifications to identify malignancy in effusions. They locate the malignant cell clusters at a low magnification and then zoom in to investigate cell-level features at a high magnification. This study predicts the malignancy at low magnification levels such as 4X and 10X in effusion cytology images to reduce scanning time. However, the most challenging problem is annotating the low magnification images, particularly the 4X images. This paper extends two semi-supervised learning (SSL) models, MixMatch and FixMatch, for semantic segmentation. The original FixMatch and MixMatch algorithms are designed for classification tasks. While performing image augmentation, the generated pseudo labels are spatially altered. We introduce reverse augmentation to compensate for the effect of the spatial alterations. The extended models are trained using labelled 10X and unlabelled 4X images. The average F-score of benign and malignant pixels on the predictions of 4X images is improved approximately by 9% for both Extended MixMatch and Extended FixMatch respectively compared with the baseline model. In the Extended MixMatch, 62% sub-regions of low magnification images are eliminated from scanning at a higher magnification, thereby saving scanning time.


Subject(s)
Neoplasms , Semantics , Humans , Cytological Techniques , Algorithms , Supervised Machine Learning , Image Processing, Computer-Assisted
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1412-1415, 2020 07.
Article in English | MEDLINE | ID: mdl-33018254

ABSTRACT

Ki-67 labelling index is a biomarker which is used across the world to predict the aggressiveness of cancer. To compute the Ki-67 index, pathologists normally count the tumour nuclei from the slide images manually; hence it is timeconsuming and is subject to inter pathologist variability. With the development of image processing and machine learning, many methods have been introduced for automatic Ki-67 estimation. But most of them require manual annotations and are restricted to one type of cancer. In this work, we propose a pooled Otsu's method to generate labels and train a semantic segmentation deep neural network (DNN). The output is postprocessed to find the Ki-67 index. Evaluation of two different types of cancer (bladder and breast cancer) results in a mean absolute error of 3.52%. The performance of the DNN trained with automatic labels is better than DNN trained with ground truth by an absolute value of 1.25%.


Subject(s)
Deep Learning , Neural Networks, Computer , Humans , Image Processing, Computer-Assisted , Ki-67 Antigen , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...