Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nat Commun ; 14(1): 1879, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37019921

ABSTRACT

Conjugation is used by bacteria to propagate antimicrobial resistance (AMR) in the environment. Central to this process are widespread conjugative F-pili that establish the connection between donor and recipient cells, thereby facilitating the spread of IncF plasmids among enteropathogenic bacteria. Here, we show that the F-pilus is highly flexible but robust at the same time, properties that increase its resistance to thermochemical and mechanical stresses. By a combination of biophysical and molecular dynamics methods, we establish that the presence of phosphatidylglycerol molecules in the F-pilus contributes to the structural stability of the polymer. Moreover, this structural stability is important for successful delivery of DNA during conjugation and facilitates rapid formation of biofilms in harsh environmental conditions. Thus, our work highlights the importance of F-pilus structural adaptations for the efficient spread of AMR genes in a bacterial population and for the formation of biofilms that protect against the action of antibiotics.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Drug Resistance, Bacterial , Plasmids , Biofilms , Conjugation, Genetic
2.
bioRxiv ; 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36993699

ABSTRACT

The Legionella pneumophila Dot/Icm type IV secretion system (T4SS) delivers effector proteins into host cells during infection. Despite its significance as a potential drug target, our current understanding of its atomic structure is limited to isolated subcomplexes. In this study, we used subtomogram averaging and integrative modeling to construct a nearly-complete model of the Dot/Icm T4SS accounting for seventeen protein components. We locate and provide insights into the structure and function of six new components including DotI, DotJ, DotU, IcmF, IcmT, and IcmX. We find that the cytosolic N-terminal domain of IcmF, a key protein forming a central hollow cylinder, interacts with DotU, providing insight into previously uncharacterized density. Furthermore, our model, in combination with analyses of compositional heterogeneity, explains how the cytoplasmic ATPase DotO is connected to the periplasmic complex via interactions with membrane-bound DotI/DotJ proteins. Coupled with in situ infection data, our model offers new insights into the T4SS-mediated secretion mechanism.

3.
Microbiol Res ; 232: 126392, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31841935

ABSTRACT

Bacterial cell surface adhesins play a major role in facilitating host colonization and subsequent establishment of infection. The surface of Mycobacterium tuberculosis, owing to the complex architecture of its cell envelope, expresses numerous adhesins with varied chemical nature, including proteins, lipids, lipoproteins, glycoproteins and glycopolymers. Studies on mycobacterial adhesins show that they bind with multifarious host receptors and extracellular matrix (ECM) components. In this review we have highlighted the adhesins that are abundantly present on the mycobacterial surface and their interactions with host receptors. M. tuberculosis interacts with various host cell surface receptors such as toll like receptors, C-type lectin receptors, scavenger receptors, and Fc and complement receptors. Apart from these, ECM components like fibronectin, collagen, elastin, laminin, fibrillin and vitronectin also provide binding sites for surface adhesins of the tubercle bacilli. M. tuberculosis adhesins include proteins with and without signal peptide sequence and transmembrane proteins. Other surface adhesin macromolecules of M. tuberculosis comprises of lipids, glycolipids and glycopolymers. The interaction between the mycobacterial adhesins and their host receptors result in adhesion of the microbe to the host cells, induction of immune response and aid in the pathogenesis of the disease. A thorough understanding of the different M. tuberculosis surface adhesins and host receptors will provide a better picture of interaction between them at molecular level. The information gained on adhesins and host receptors will prove beneficial in developing novel therapeutic strategies such as the use of anti-adhesin molecules to hinder the adhesion of bacteria to the host cells, thereby preventing establishment of infection. The surface molecules discussed in this review will also benefit in identification of new drug targets, diagnostic markers or vaccine candidates against the deadly pathogen.


Subject(s)
Adhesins, Bacterial/chemistry , Adhesins, Bacterial/metabolism , Mycobacterium tuberculosis/metabolism , Antitubercular Agents , Bacterial Proteins , Binding Sites , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/metabolism , Host-Pathogen Interactions/physiology , Humans , Protein Sorting Signals , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/metabolism , Vesicular Transport Proteins
4.
Biochem J ; 474(16): 2691-2711, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28673961

ABSTRACT

Human nucleotide-binding oligomerization domain proteins, hNOD1 and hNOD2, are host intracellular receptors with C-terminal leucine-rich repeat (LRR) domains, which recognize specific bacterial peptidoglycan (PG) fragments as their ligands. The specificity of this recognition is dependent on the third amino acid of the stem peptide of the PG ligand, which is usually meso-diaminopimelic acid (mesoDAP) or l-lysine (l-Lys). Since the LRR domains of hNOD receptors had been experimentally shown to confer the PG ligand-sensing specificity, we developed three-dimensional structures of hNOD1-LRR and the hNOD2-LRR to understand the mechanism of differential recognition of muramyl peptide ligands by hNOD receptors. The hNOD1-LRR and hNOD2-LRR receptor models exhibited right-handed curved solenoid shape. The hot-spot residues experimentally proved to be critical for ligand recognition were located in the concavity of the NOD-LRR and formed the recognition site. Our molecular docking analyses and molecular electrostatic potential mapping studies explain the activation of hNOD-LRRs, in response to effective molecular interactions of PG ligands at the recognition site; and conversely, the inability of certain PG ligands to activate hNOD-LRRs, by deviations from the recognition site. Based on molecular docking studies using PG ligands, we propose few residues - G825, D826 and N850 in hNOD1-LRR and L904, G905, W931, L932 and S933 in hNOD2-LRR, evolutionarily conserved across different host species, which may play a major role in ligand recognition. Thus, our integrated experimental and computational approach elucidates the molecular basis underlying the differential recognition of PG ligands by hNOD receptors.


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine/chemistry , Molecular Docking Simulation , Nod1 Signaling Adaptor Protein/chemistry , Nod2 Signaling Adaptor Protein/chemistry , Acetylmuramyl-Alanyl-Isoglutamine/genetics , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , HEK293 Cells , Humans , Ligands , Nod1 Signaling Adaptor Protein/genetics , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism , Protein Domains
5.
Biochem J ; 473(24): 4573-4592, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27742759

ABSTRACT

Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) is an intracellular pattern recognition receptor that recognizes bacterial peptidoglycan (PG) containing meso-diaminopimelic acid (mesoDAP) and activates the innate immune system. Interestingly, a few pathogenic and commensal bacteria modify their PG stem peptide by amidation of mesoDAP (mesoDAPNH2). In the present study, NOD1 stimulation assays were performed using bacterial PG containing mesoDAP (PGDAP) and mesoDAPNH2 (PGDAPNH2) to understand the differences in their biomolecular recognition mechanism. PGDAP was effectively recognized, whereas PGDAPNH2 showed reduced recognition by the NOD1 receptor. Restimulation of the NOD1 receptor, which was initially stimulated with PGDAP using PGDAPNH2, did not show any further NOD1 activation levels than with PGDAP alone. But the NOD1 receptor initially stimulated with PGDAPNH2 responded effectively to restimulation with PGDAP The biomolecular structure-recognition relationship of the ligand-sensing leucine-rich repeat (LRR) domain of human NOD1 (NOD1-LRR) with PGDAP and PGDAPNH2 was studied by different computational techniques to further understand the molecular basis of our experimental observations. The d-Glu-mesoDAP motif of GMTPDAP, which is the minimum essential motif for NOD1 activation, was found involved in specific interactions at the recognition site, but the interactions of the corresponding d-Glu-mesoDAP motif of PGDAPNH2 occur away from the recognition site of the NOD1 receptor. Hot-spot residues identified for effective PG recognition by NOD1-LRR include W820, G821, D826 and N850, which are evolutionarily conserved across different host species. These integrated results thus successfully provided the atomic level and biochemical insights on how PGs containing mesoDAPNH2 evade NOD1-LRR receptor recognition.


Subject(s)
Diaminopimelic Acid/chemistry , Diaminopimelic Acid/metabolism , Nod1 Signaling Adaptor Protein/chemistry , Nod1 Signaling Adaptor Protein/metabolism , Peptidoglycan/chemistry , Peptidoglycan/metabolism , Amino Acid Sequence , Humans , Molecular Dynamics Simulation , Molecular Sequence Data , Protein Binding , Protein Structure, Secondary
6.
Pathog Glob Health ; 110(7-8): 287-291, 2016.
Article in English | MEDLINE | ID: mdl-27788631

ABSTRACT

With the introduction of highly sensitive hepatitis B surface antigen immunoassay, transfusion associated HBV infection have reduced drastically but they still tend to occur due to blood donors with occult hepatitis B infection (OBI) and window period (WP) infection. Sera from, 24338 healthy voluntary blood donors were screened for HBsAg, HIV and HCV antibody using Vitros Enhanced Chemiluminescent Immunoassay. The median age of the donor population was 30 (range 18-54) with male preponderance (98%). All serologically negative samples were screened by nucleic acid testing (NAT) for viral DNA and RNA. NAT-positive samples were subjected to discriminatory NAT for HBV, HCV, and HIV and all samples positive for HBV DNA were tested for anti-HBc, anti-HBs, HBeAg. Viral load was determined using artus HBV RG PCR Kit. Of the 24,338 donors screened, 99.81% (24292/24338) were HBsAg negative of which NAT was positive for HBV DNA in 0.0205% (5/24292) donors. Four NAT positive donors had viral load of <200 IU/ml making them true cases of OBI. One NAT positive donor was negative for all antibodies making it a case of WP infection. Among OBI donors, 75% (3/4) were immune and all were negative for HBeAg. Precise HBV viral load could not be determined in all (5/5) NAT positive donors due to viral loads below the detection limit of the artus HBV RG PCR Kit. The overall incidence of OBI and WP infections was found to be low at 1 in 6503 and 1 in 24214 donations, respectively. More studies are needed to determine the actual burden of WP infections in Indian blood donors.


Subject(s)
DNA, Viral/blood , Hepatitis B virus/isolation & purification , Hepatitis B/virology , RNA, Viral/blood , Transfusion Reaction , Adolescent , Adult , Blood Donors , Cross-Sectional Studies , Female , Hepatitis B/diagnosis , Hepatitis B/epidemiology , Hepatitis B virus/genetics , Humans , Incidence , India/epidemiology , Male , Middle Aged , Tertiary Care Centers , Viral Load , Young Adult
7.
Int J Biol Macromol ; 77: 314-21, 2015.
Article in English | MEDLINE | ID: mdl-25841371

ABSTRACT

The morbidity and the mortality associated with Staphylococcus aureus and S. epidermidis infections have greatly increased due to the rapid emergence of highly virulent and antibiotic resistant strains. Development of a vaccine-based therapy is greatly desired. However, no staphylococcal vaccine is available till date. In this study, we have identified Major amidase (Atl-AM) as a prime candidate for future vaccine design against these pathogens. Atl-AM is a multi-functional non-covalently cell wall associated protein which is involved in staphylococcal cell separation after cell division, host extracellular matrix adhesion and biofilm formation. Atl-AM is present on the surface of diverse S. aureus and S. epidermidis strains. When used in combination with Freund's adjuvant, Atl-AM generated a mixed Th1 and Th2 mediated immune response which is skewed more toward Th1; and showed increased production of opsonophagocytic IgG2a and IgG2b antibodies. Significant protective immune response was observed when vaccinated mice were challenged with S. aureus or S. epidermidis. Vaccination prevented the systemic dissemination of both organisms. Our results demonstrate the remarkable efficacy of Atl-AM as a vaccine candidate against both of these pathogens.


Subject(s)
Amidohydrolases/pharmacology , Cell Wall/enzymology , Staphylococcus aureus/cytology , Staphylococcus aureus/immunology , Staphylococcus epidermidis/cytology , Staphylococcus epidermidis/immunology , Abscess/microbiology , Abscess/prevention & control , Amidohydrolases/immunology , Animals , Antigens, Bacterial/immunology , Immunoglobulin G/biosynthesis , Mice , Phagocytosis/drug effects , Species Specificity , Staphylococcus aureus/growth & development , Staphylococcus aureus/physiology , Staphylococcus epidermidis/drug effects , Th1 Cells/drug effects , Th1 Cells/immunology , Th2 Cells/drug effects , Th2 Cells/immunology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...