Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0301263, 2024.
Article in English | MEDLINE | ID: mdl-38820390

ABSTRACT

The diagnosis of human knee abnormalities using the surface electromyography (sEMG) signal obtained from lower limb muscles with machine learning is a major problem due to the noisy nature of the sEMG signal and the imbalance in data corresponding to healthy and knee abnormal subjects. To address this challenge, a combination of wavelet decomposition (WD) with ensemble empirical mode decomposition (EEMD) and the Synthetic Minority Oversampling Technique (S-WD-EEMD) is proposed. In this study, a hybrid WD-EEMD is considered for the minimization of noises produced in the sEMG signal during the collection, while the Synthetic Minority Oversampling Technique (SMOTE) is considered to balance the data by increasing the minority class samples during the training of machine learning techniques. The findings indicate that the hybrid WD-EEMD with SMOTE oversampling technique enhances the efficacy of the examined classifiers when employed on the imbalanced sEMG data. The F-Score of the Extra Tree Classifier, when utilizing WD-EEMD signal processing with SMOTE oversampling, is 98.4%, whereas, without the SMOTE oversampling technique, it is 95.1%.


Subject(s)
Electromyography , Signal Processing, Computer-Assisted , Humans , Electromyography/methods , Machine Learning , Knee Joint/physiopathology , Male , Adult , Wavelet Analysis , Female , Knee/physiopathology , Algorithms
2.
Biomed Eng Lett ; 12(4): 343-358, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36238368

ABSTRACT

Human lower limb activity recognition (HLLAR) has grown in popularity over the last decade mainly because to its applications in the identification and control of neuromuscular disorders, security, robotics, and prosthetics. Surface electromyography (sEMG) sensors provide various advantages over other wearable or visual sensors for HLLAR applications, including quick response, pervasiveness, no medical monitoring, and negligible infection. Recognizing lower limb activity from sEMG signals is also challenging owing to the noise in the sEMG signal. Pre- processing of sEMG signals is extremely desirable before the classification because they allow a more consistent and precise evaluation in the above applications. This article provides a segment-by-segment overview of: (1) Techniques for eliminating artifacts from sEMG signals from the lower limb. (2) A survey of existing datasets of lower limb sEMG. (3) A concise description of the various techniques for processing and classifying sEMG data for various applications involving lower limb activity. Finally, an open discussion is presented, which may result in the identification of a variety of future research possibilities for human lower limb activity recognition. Therefore, it is possible to anticipate that the framework presented in this study can aid in the advancement of sEMG-based recognition of human lower limb activity.

3.
Phys Eng Sci Med ; 44(4): 1297-1309, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34748192

ABSTRACT

Surface electromyography (sEMG) signal classification has many applications such as human-machine interaction, diagnosis of kinesiological studies, and neuromuscular diseases. However, these signals are complicated because of different artifacts added to the sEMG signal during recording. In this study, a multi-stage classification technique is proposed for the identification of distinct movements of the lower limbs using sEMG signals acquired from leg muscles of healthy knee and abnormal knee subjects. This investigation involves 11 subjects with a knee abnormality and 11 without knee abnormality for three distinct activities viz. walking, leg extension from sitting position (sitting), and flexion of the leg (standing). Discrete wavelet denoising to fourth level decomposition has been implemented for the artifact reduction and the signal has been segmented using overlapping windowing technique. A study of four different architectures of 1D convolutional neural network models is undertaken for the prediction of lower limb activities and the final prediction is achieved via a voting mechanism of all four model results. The performance parameters of CNN models have been calculated for three different cases: (1) healthy subjects (2) subjects with knee abnormality (3) Pooled data (combination of abnormal knee and healthy knee subjects) using nested threefold cross-validation. It has been found that the voting mechanism yields an average classification accuracy as 99.35%, 97.63%, and 97.14% for healthy subjects, knee abnormal subjects, and pooled data, respectively. The result validates that the proposed voting-based 1D CNN model is efficient and useful in lower limb activity recognition using the sEMG signal.


Subject(s)
Algorithms , Walking , Electromyography , Humans , Lower Extremity , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...