Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cephalalgia ; 37(8): 737-755, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27226003

ABSTRACT

Background Familial hemiplegic migraine (FHM) is a rare monogenic migraine subtype characterised by attacks associated with transient motor weakness. Clinical information is mainly based on reports of small families with only short follow-up. Here, we document a prospective 15-year follow-up of an extended family with FHM type 2. Patients and methods After diagnosing FHM in a patient with severe attacks associated with coma and fever, we identified eight more family members with FHM and one with possible FHM. All family members were prospectively followed for 15 years. In total 13 clinically affected and 21 clinically non-affected family members were genetically tested and repeatedly investigated. Results A novel p.Arg348Pro ATP1A2 mutation was found in 14 family members: 12 with clinical FHM, one with psychomotor retardation and possible FHM, and one without FHM features. In 9/12 (75%) family members with genetically confirmed FHM, attacks were severe, long-lasting, and often associated with impaired consciousness and fever. Such attacks were frequently misdiagnosed and treated as viral meningitis or stroke. Epilepsy was reported in three family members with FHM and in the one with psychomotor retardation and possible FHM. Ataxia was not observed. Conclusion FHM should be considered in patients with recurrent coma and fever.


Subject(s)
Migraine with Aura/genetics , Sodium-Potassium-Exchanging ATPase/genetics , Coma/genetics , Female , Fever/genetics , Follow-Up Studies , Humans , Male , Migraine with Aura/complications , Mutation , Pedigree , Prospective Studies
2.
Stem Cell Res ; 14(2): 198-210, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25679997

ABSTRACT

Pediatric myelodysplastic syndrome (MDS) is a heterogeneous disease covering a spectrum ranging from aplasia (RCC) to myeloproliferation (RAEB(t)). In adult-type MDS there is increasing evidence for abnormal function of the bone-marrow microenvironment. Here, we extensively studied the mesenchymal stromal cells (MSCs) derived from children with MDS. MSCs were expanded from the bone-marrow of 17 MDS patients (RCC: n=10 and advanced MDS: n=7) and pediatric controls (n=10). No differences were observed with respect to phenotype, differentiation capacity, immunomodulatory capacity or hematopoietic support. mRNA expression analysis by Deep-SAGE revealed increased IL-6 expression in RCC- and RAEB(t)-MDS. RCC-MDS MSC expressed increased levels of DKK3, a protein associated with decreased apoptosis. RAEB(t)-MDS revealed increased CRLF1 and decreased DAPK1 expressions. This pattern has been associated with transformation in hematopoietic malignancies. Genes reported to be differentially expressed in adult MDS-MSC did not differ between MSC of pediatric MDS and controls. An altered mRNA expression profile, associated with cell survival and malignant transformation, of MSC derived from children with MDS strengthens the hypothesis that the micro-environment is of importance in this disease. Our data support the understanding that pediatric and adult MDS are two different diseases. Further evaluation of the pathways involved might reveal additional therapy targets.


Subject(s)
Mesenchymal Stem Cells/physiology , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Adolescent , Cell Differentiation/physiology , Cell Proliferation/physiology , Cells, Cultured , Child , Child, Preschool , Cytogenetics/methods , Female , Humans , In Vitro Techniques , Infant , Male , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Myelodysplastic Syndromes/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...