Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Geriatr ; 23(1): 205, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37003981

ABSTRACT

BACKGROUND: Loss of autonomy in day-to-day functioning is one of the feared outcomes of Alzheimer's disease (AD), and relatives may have been worried by subtle behavioral changes in ordinary life situations long before these changes are given medical attention. In the present study, we ask if such subtle changes should be given weight as an early predictor of a future AD diagnosis. METHODS: Longitudinal data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were used to define a group of adults with a mild cognitive impairment (MCI) diagnosis remaining stable across several visits (sMCI, n=360; 55-91 years at baseline), and a group of adults who over time converted from having an MCI diagnosis to an AD diagnosis (cAD, n=320; 55-88 years at baseline). Eleven features were used as input in a Random Forest (RF) binary classifier (sMCI vs. cAD) model. This model was tested on an unseen holdout part of the dataset, and further explored by three different permutation-driven importance estimates and a comprehensive post hoc machine learning exploration. RESULTS: The results consistently showed that measures of daily life functioning, verbal memory function, and a volume measure of hippocampus were the most important predictors of conversion from an MCI to an AD diagnosis. Results from the RF classification model showed a prediction accuracy of around 70% in the test set. Importantly, the post hoc analyses showed that even subtle changes in everyday functioning noticed by a close informant put MCI patients at increased risk for being on a path toward the major cognitive impairment of an AD diagnosis. CONCLUSION: The results showed that even subtle changes in everyday functioning should be noticed when reported by relatives in a clinical evaluation of patients with MCI. Information of these changes should also be included in future longitudinal studies to investigate different pathways from normal cognitive aging to the cognitive decline characterizing different stages of AD and other neurodegenerative disorders.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Magnetic Resonance Imaging/methods , Neuroimaging , Machine Learning , Hippocampus , Cognitive Dysfunction/diagnosis
2.
Sci Rep ; 12(1): 15566, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36114257

ABSTRACT

Patients with Mild Cognitive Impairment (MCI) have an increased risk of Alzheimer's disease (AD). Early identification of underlying neurodegenerative processes is essential to provide treatment before the disease is well established in the brain. Here we used longitudinal data from the ADNI database to investigate prediction of a trajectory towards AD in a group of patients defined as MCI at a baseline examination. One group remained stable over time (sMCI, n = 357) and one converted to AD (cAD, n = 321). By running two independent classification methods within a machine learning framework, with cognitive function, hippocampal volume and genetic APOE status as features, we obtained a cross-validation classification accuracy of about 70%. This level of accuracy was confirmed across different classification methods and validation procedures. Moreover, the sets of misclassified subjects had a large overlap between the two models. Impaired memory function was consistently found to be one of the core symptoms of MCI patients on a trajectory towards AD. The prediction above chance level shown in the present study should inspire further work to develop tools that can aid clinicians in making prognostic decisions.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Machine Learning , Alzheimer Disease/diagnosis , Apolipoproteins E , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/diagnostic imaging , Humans , Magnetic Resonance Imaging
3.
Sci Rep ; 11(1): 2122, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33483535

ABSTRACT

The concept of Mild Cognitive Impairment (MCI) is used to describe the early stages of Alzheimer's disease (AD), and identification and treatment before further decline is an important clinical task. We selected longitudinal data from the ADNI database to investigate how well normal function (HC, n= 134) vs. conversion to MCI (cMCI, n= 134) and stable MCI (sMCI, n=333) vs. conversion to AD (cAD, n= 333) could be predicted from cognitive tests, and whether the predictions improve by adding information from magnetic resonance imaging (MRI) examinations. Features representing trajectories of change in the selected cognitive and MRI measures were derived from mixed effects models and used to train ensemble machine learning models to classify the pairs of subgroups based on a subset of the data set. Evaluation in an independent test set showed that the predictions for HC vs. cMCI improved substantially when MRI features were added, with an increase in [Formula: see text]-score from 60 to 77%. The [Formula: see text]-scores for sMCI vs. cAD were 77% without and 78% with inclusion of MRI features. The results are in-line with findings showing that cognitive changes tend to manifest themselves several years after the Alzheimer's disease is well-established in the brain.


Subject(s)
Alzheimer Disease/diagnosis , Brain/diagnostic imaging , Cognition/physiology , Cognitive Dysfunction/diagnosis , Machine Learning , Magnetic Resonance Imaging/methods , Aged , Aged, 80 and over , Algorithms , Alzheimer Disease/physiopathology , Alzheimer Disease/psychology , Brain/pathology , Brain/physiopathology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/psychology , Databases, Factual/statistics & numerical data , Disease Progression , Female , Humans , Male , Models, Neurological , Prognosis
4.
Hum Brain Mapp ; 41(3): 697-709, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31652017

ABSTRACT

The brain functional connectome forms a relatively stable and idiosyncratic backbone that can be used for identification or "fingerprinting" of individuals with a high level of accuracy. While previous cross-sectional evidence has demonstrated increased stability and distinctiveness of the brain connectome during the course of childhood and adolescence, less is known regarding the longitudinal stability in middle and older age. Here, we collected structural and resting-state functional MRI data at two time points separated by 2-3 years in 75 middle-aged and older adults (age 49-80, SD = 6.91 years) which allowed us to assess the long-term stability of the functional connectome. We show that the connectome backbone generally remains stable over a 2-3 years period in middle and older age. Independent of age, cortical volume was associated with the connectome stability of several canonical resting-state networks, suggesting that the connectome backbone relates to structural properties of the cortex. Moreover, the individual longitudinal stability of subcortical and default mode networks was associated with individual differences in cross-sectional and longitudinal measures of episodic memory performance, providing new evidence for the importance of these networks in maintaining mnemonic processing in middle and old age. Together, the findings encourage the use of within-subject connectome stability analyses for understanding individual differences in brain function and cognition in aging.


Subject(s)
Aging/physiology , Brain/physiology , Connectome , Default Mode Network/physiology , Memory, Episodic , Nerve Net/physiology , Aged , Aged, 80 and over , Brain/diagnostic imaging , Cross-Sectional Studies , Default Mode Network/diagnostic imaging , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/diagnostic imaging
5.
PLoS One ; 14(4): e0207967, 2019.
Article in English | MEDLINE | ID: mdl-30939173

ABSTRACT

OBJECTIVE: In a three-wave 6 yrs longitudinal study we investigated if the expansion of lateral ventricle (LV) volumes (regarded as a proxy for brain tissue loss) predicts third wave performance on a test of response inhibition (RI). PARTICIPANTS AND METHODS: Trajectories of left and right lateral ventricle volumes across the three waves were quantified using the longitudinal stream in Freesurfer. All participants (N = 74;48 females;mean age 66.0 yrs at the third wave) performed the Color-Word Interference Test (CWIT). Response time on the third condition of CWIT, divided into fast, medium and slow, was used as outcome measure in a machine learning framework. Initially, we performed a linear mixed-effect (LME) analysis to describe subject-specific trajectories of the left and right LV volumes (LVV). These features were input to a multinomial logistic regression classification procedure, predicting individual belongings to one of the three RI classes. To obtain results that might generalize, we evaluated the significance of a k-fold cross-validated f1-score with a permutation test, providing a p-value that approximates the probability that the score would be obtained by chance. We also calculated a corresponding confusion matrix. RESULTS: The LME-model showed an annual ∼ 3.0% LVV increase. Evaluation of a cross-validated score using 500 permutations gave an f1-score of 0.462 that was above chance level (p = 0.014). 56% of the fast performers were successfully classified. All these were females, and typically older than 65 yrs at inclusion. For the true slow performers, those being correctly classified had higher LVVs than those being misclassified, and their ages at inclusion were also higher. CONCLUSION: Major contributions were: (i) a longitudinal design, (ii) advanced brain imaging and segmentation procedures with longitudinal data analysis, and (iii) a data driven machine learning approach including cross-validation and permutation testing to predict behaviour, solely from the individual's brain "signatures" (LVV trajectories).


Subject(s)
Aging , Lateral Ventricles/physiology , Aged , Female , Humans , Lateral Ventricles/anatomy & histology , Longitudinal Studies , Machine Learning , Magnetic Resonance Imaging , Male , Middle Aged , Neuroimaging , Organ Size
6.
Front Aging Neurosci ; 7: 81, 2015.
Article in English | MEDLINE | ID: mdl-26029102

ABSTRACT

Motivated by the frontal- and white matter (WM) retrogenesis hypotheses and the assumptions that fronto-striatal circuits are especially vulnerable in normal aging, the goal of the present study was to identify fiber bundles connecting subcortical nuclei and frontal areas and obtain site-specific information about age related fractional anisotropy (FA) changes. Multimodal magnetic resonance image acquisitions [3D T1-weighted and diffusion weighted imaging (DWI)] were obtained from healthy older adults (N = 76, range 49-80 years at inclusion) at two time points, 3 years apart. A subset of the participants (N = 24) was included at a third time-point. In addition to the frontal-subcortical fibers, the anterior callosal fiber (ACF) and the corticospinal tract (CST) was investigated by its mean FA together with tract parameterization analysis. Our results demonstrated fronto-striatal structural connectivity decline (reduced FA) in normal aging with substantial inter-individual differences. The tract parameterization analysis showed that the along tract FA profiles were characterized by piece-wise differential changes along their extension rather than being uniformly affected. To the best of our knowledge, this is the first longitudinal study detecting age-related changes in frontal-subcortical WM connections in normal aging.

7.
Front Hum Neurosci ; 8: 86, 2014.
Article in English | MEDLINE | ID: mdl-24616684

ABSTRACT

Nondirective meditation techniques are practiced with a relaxed focus of attention that permits spontaneously occurring thoughts, images, sensations, memories, and emotions to emerge and pass freely, without any expectation that mind wandering should abate. These techniques are thought to facilitate mental processing of emotional experiences, thereby contributing to wellness and stress management. The present study assessed brain activity by functional magnetic resonance imaging (fMRI) in 14 experienced practitioners of Acem meditation in two experimental conditions. In the first, nondirective meditation was compared to rest. Significantly increased activity was detected in areas associated with attention, mind wandering, retrieval of episodic memories, and emotional processing. In the second condition, participants carried out concentrative practicing of the same meditation technique, actively trying to avoid mind wandering. The contrast nondirective meditation > concentrative practicing was characterized by higher activity in the right medial temporal lobe (parahippocampal gyrus and amygdala). In conclusion, the present results support the notion that nondirective meditation, which permits mind wandering, involves more extensive activation of brain areas associated with episodic memories and emotional processing, than during concentrative practicing or regular rest.

8.
J Altern Complement Med ; 15(11): 1187-92, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19922249

ABSTRACT

OBJECTIVES: In recent years, there has been significant uptake of meditation and related relaxation techniques, as a means of alleviating stress and maintaining good health. Despite its popularity, little is known about the neural mechanisms by which meditation works, and there is a need for more rigorous investigations of the underlying neurobiology. Several electroencephalogram (EEG) studies have reported changes in spectral band frequencies during meditation inspired by techniques that focus on concentration, and in comparison much less has been reported on mindfulness and nondirective techniques that are proving to be just as popular. DESIGN: The present study examined EEG changes during nondirective meditation. The investigational paradigm involved 20 minutes of acem meditation, where the subjects were asked to close their eyes and adopt their normal meditation technique, as well as a separate 20-minute quiet rest condition where the subjects were asked to close their eyes and sit quietly in a state of rest. Both conditions were completed in the same experimental session with a 15-minute break in between. RESULTS: Significantly increased theta power was found for the meditation condition when averaged across all brain regions. On closer examination, it was found that theta was significantly greater in the frontal and temporal-central regions as compared to the posterior region. There was also a significant increase in alpha power in the meditation condition compared to the rest condition, when averaged across all brain regions, and it was found that alpha was significantly greater in the posterior region as compared to the frontal region. CONCLUSIONS: These findings from this study suggest that nondirective meditation techniques alter theta and alpha EEG patterns significantly more than regular relaxation, in a manner that is perhaps similar to methods based on mindfulness or concentration.


Subject(s)
Alpha Rhythm , Brain/physiology , Meditation , Theta Rhythm , Adult , Analysis of Variance , Electroencephalography , Female , Humans , Male , Middle Aged , Relaxation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...