Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Front Radiol ; 4: 1357341, 2024.
Article in English | MEDLINE | ID: mdl-38840717

ABSTRACT

Standard treatment of patients with glioblastoma includes surgical resection of the tumor. The extent of resection (EOR) achieved during surgery significantly impacts prognosis and is used to stratify patients in clinical trials. In this study, we developed a U-Net-based deep-learning model to segment contrast-enhancing tumor on post-operative MRI exams taken within 72 h of resection surgery and used these segmentations to classify the EOR as either maximal or submaximal. The model was trained on 122 multiparametric MRI scans from our institution and achieved a mean Dice score of 0.52 ± 0.03 on an external dataset (n = 248), a performance -on par with the interrater agreement between expert annotators as reported in literature. We obtained an EOR classification precision/recall of 0.72/0.78 on the internal test dataset (n = 462) and 0.90/0.87 on the external dataset. Furthermore, Kaplan-Meier curves were used to compare the overall survival between patients with maximal and submaximal resection in the internal test dataset, as determined by either clinicians or the model. There was no significant difference between the survival predictions using the model's and clinical EOR classification. We find that the proposed segmentation model is capable of reliably classifying the EOR of glioblastoma tumors on early post-operative MRI scans. Moreover, we show that stratification of patients based on the model's predictions offers at least the same prognostic value as when done by clinicians.

2.
J Neurooncol ; 2024 May 19.
Article in English | MEDLINE | ID: mdl-38762830

ABSTRACT

PURPOSE: Glioblastoma (GBM) is an aggressive brain tumor in which primary therapy is standardized and consists of surgery, radiotherapy (RT), and chemotherapy. However, the optimal time from surgery to start of RT is unknown. A high-grade glioma cancer patient pathway (CPP) was implemented in Norway in 2015 to avoid non-medical delays and regional disparity, and to optimize information flow to patients. This study investigated how CPP affected time to RT after surgery and overall survival. METHODS: This study included consecutive GBM patients diagnosed in South-Eastern Norway Regional Health Authority from 2006 to 2019 and treated with RT. The pre CPP implementation group constituted patients diagnosed 2006-2014, and the post CPP implementation group constituted patients diagnosed 2016-2019. We evaluated timing of RT and survival in relation to CPP implementation. RESULTS: A total of 1212 patients with GBM were included. CPP implementation was associated with significantly better outcomes (p < 0.001). Median overall survival was 12.9 months. The odds of receiving RT within four weeks after surgery were significantly higher post CPP implementation (p < 0.001). We found no difference in survival dependent on timing of RT below 4, 4-6 or more than 6 weeks (p = 0.349). Prognostic factors for better outcomes in adjusted analyses were female sex (p = 0.005), younger age (p < 0.001), solitary tumors (p = 0.008), gross total resection (p < 0.001), and higher RT dose (p < 0.001). CONCLUSION: CPP implementation significantly reduced time to start of postoperative RT. Survival was significantly longer in the period after the CPP implementation, however, timing of postoperative RT relative to time of surgery did not impact survival.

3.
Neuropathol Appl Neurobiol ; 50(3): e12984, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38783575

ABSTRACT

AIMS: The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter region is essential in evaluating the prognosis and predicting the drug response in patients with glioblastoma. In this study, we evaluated the utility of using nanopore long-read sequencing as a method for assessing methylation levels throughout the MGMT CpG-island, compared its performance to established techniques and demonstrated its clinical applicability. METHODS: We analysed 165 samples from CNS tumours, focusing on the MGMT CpG-island using nanopore sequencing. Oxford Nanopore Technologies (ONT) MinION and PromethION flow cells were employed for single sample or barcoded assays, guided by a CRISPR/Cas9 protocol, adaptive sampling or as part of a whole genome sequencing assay. Methylation data obtained through nanopore sequencing were compared to results obtained via pyrosequencing and methylation bead arrays. Hierarchical clustering was applied to nanopore sequencing data for patient stratification. RESULTS: Nanopore sequencing displayed a strong correlation (R2 = 0.91) with pyrosequencing results for the four CpGs of MGMT analysed by both methods. The MGMT-STP27 algorithm's classification was effectively reproduced using nanopore data. Unsupervised hierarchical clustering revealed distinct patterns in methylated and unmethylated samples, providing comparable survival prediction capabilities. Nanopore sequencing yielded high-confidence results in a rapid timeframe, typically within hours of sequencing, and extended the analysis to all 98 CpGs of the MGMT CpG-island. CONCLUSIONS: This study presents nanopore sequencing as a valid and efficient method for determining MGMT promotor methylation status. It offers a comprehensive view of the MGMT promoter methylation landscape, which enables the identification of potentially clinically relevant subgroups of patients. Further exploration of the clinical implications of patient stratification using nanopore sequencing of MGMT is warranted.


Subject(s)
DNA Methylation , Nanopore Sequencing , Promoter Regions, Genetic , Humans , Nanopore Sequencing/methods , Promoter Regions, Genetic/genetics , CpG Islands/genetics , Tumor Suppressor Proteins/genetics , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Brain Neoplasms/genetics , Female , Male , Glioblastoma/genetics , Aged
4.
Acta Oncol ; 63: 83-94, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38501768

ABSTRACT

BACKGROUND: Surveillance of incidence and survival of central nervous system tumors is essential to monitor disease burden and epidemiological changes, and to allocate health care resources. Here, we describe glioma incidence and survival trends by histopathology group, age, and sex in the Norwegian population. MATERIAL AND METHODS: We included patients with a histologically verified glioma reported to the Cancer Registry of Norway from 2002 to 2021 (N = 7,048). Population size and expected mortality were obtained from Statistics Norway. Cases were followed from diagnosis until death, emigration, or 31 December 2022, whichever came first. We calculated age-standardized incidence rates (ASIR) per 100,000 person-years and age-standardized relative survival (RS).  Results: The ASIR for histologically verified gliomas was 7.4 (95% CI: 7.3-7.6) and was higher for males (8.8; 95% CI: 8.5-9.1) than females (6.1; 95% CI: 5.9-6.4). Overall incidence was stable over time. Glioblastoma was the most frequent tumor entity (ASIR = 4.2; 95% CI: 4.1-4.4). Overall, glioma patients had a 1-year RS of 63.6% (95% CI: 62.5-64.8%), and a 5-year RS of 32.8% (95% CI: 31.6-33.9%). Females had slightly better survival than males. For most entities, 1- and 5-year RS improved over time (5-year RS for all gliomas 29.0% (2006) and 33.1% (2021), p < 0.001). Across all tumor types, the RS declined with increasing age at diagnosis. INTERPRETATION: The incidence of gliomas has been stable while patient survival has increased over the past 20 years in Norway. As gliomas represent a heterogeneous group of primary CNS tumors, regular reporting from cancer registries at the histopathology group level is important to monitor disease burden and allocate health care resources in a population.


Subject(s)
Glioma , Male , Female , Humans , Incidence , Cohort Studies , Glioma/epidemiology , Registries , Norway/epidemiology
5.
Neurooncol Pract ; 11(1): 36-45, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38222046

ABSTRACT

Background: Differentiating post-radiation MRI changes from progressive disease (PD) in glioblastoma (GBM) patients represents a major challenge. The clinical problem is two-sided; avoid termination of effective therapy in case of pseudoprogression (PsP) and continuation of ineffective therapy in case of PD. We retrospectively assessed the incidence, management, and prognostic impact of PsP and analyzed factors associated with PsP in a GBM patient cohort. Methods: Consecutive GBM patients diagnosed in the South-Eastern Norway Health Region from 2015 to 2018 who had received RT and follow-up MRI were included. Tumor, patient, and treatment characteristics were analyzed in relationship to re-evaluated MRI examinations at 3 and 6 months post-radiation using Response Assessment in Neuro-Oncology criteria. Results: A total of 284 patients were included in the study. PsP incidence 3 and 6 months post-radiation was 19.4% and 7.0%, respectively. In adjusted analyses, methylated O6-methylguanine-DNA methyltransferase (MGMT) promoter and the absence of neurological deterioration were associated with PsP at both 3 (p < .001 and p = .029, respectively) and 6 months (p = .045 and p = .034, respectively) post-radiation. For patients retrospectively assessed as PD 3 months post-radiation, there was no survival benefit of treatment change (p = .838). Conclusions: PsP incidence was similar to previous reports. In addition to the previously described correlation of methylated MGMT promoter with PsP, we also found that absence of neurological deterioration significantly correlated with PsP. Continuation of temozolomide courses did not seem to compromise survival for patients with PD at 3 months post-radiation; therefore, we recommend continuing adjuvant temozolomide courses in case of inconclusive MRI findings.

6.
Cancers (Basel) ; 15(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38136371

ABSTRACT

Glioblastoma (GBM) is an aggressive and highly heterogeneous primary brain tumor. Glioma stem cells represent a subpopulation of tumor cells with stem cell traits that are presumed to be the cause of tumor relapse. There exists complex tumor heterogeneity in drug sensitivity patterns between glioma stem cell (GSC) cultures derived from different patients. Here, we describe that heterogeneity also exists between GSC cultures derived from multiple biopsies within a single tumor. From biopsies harvested within spatially distinct regions representing the entire tumor mass, we established seven GSC cultures and compared their stem cell properties, mutations, gene expression profiles, and drug sensitivity patterns against 115 different anticancer drugs. The results were compared to 14 GSC cultures derived from other patients. Between the multiregional-derived GSC cultures, we observed only minor differences in their phenotype, proliferative capacity, and global gene expression. Further, they displayed intratumoral heterogeneity in mutational profiles and sensitivity patterns to anticancer drugs. This heterogeneity, however, did not exceed the extensive heterogeneity found between GSC cultures derived from other GBM patients. Our results suggest that the use of GSC cultures from one single focal biopsy may underestimate the overall complexity of the GSC population and display the importance of including GSC cultures reflecting the entire tumor mass in drug screening strategies.

7.
Neurooncol Pract ; 10(6): 555-564, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38026582

ABSTRACT

Background: New treatment modalities have not been widely adopted for patients with glioblastoma (GBM) after the addition of temozolomide to radiotherapy. We hypothesize that increased extent of resection (EOR) has resulted in improved survival for surgically treated patients with glioblastoma at the population level. Methods: Retrospective analysis of adult patients operated for glioblastoma in the population of South-Eastern Norway. Patients were stratified into Pre-temozolomide- (2003-2005), temozolomide- (2006-2012), and resection-focused period (2013-2019) and evaluated according to age and EOR. Results: The study included 1657 adult patients operated on for supratentorial glioblastoma. The incidence of histologically confirmed glioblastoma increased from 3.7 in 2003 to 5.3 per 100 000 in 2019. The median survival was 11.4 months. Complete resection of contrast-enhancing tumor (CRCET) was achieved in 386 patients, and this fraction increased from 13% to 32% across the periods. Significant improvement in median survival was found between the first 2 periods and the last (10.5 and 10.6 vs. 12.3 months; P < .01), with a significant increase in 3- and 5-year survival probability to 12% and 6% (P < .01). Patients with CRCET survived longer than patients with non-CRCET (16.1 vs. 10.8 months; P < .001). The median survival doubled in patients ≥70 years and (12.1 months). Survival was similar between the time periods in patients where CRCET was achieved. Conclusions: We demonstrate an improved survival of GBM patients at the population level associated with an increased fraction of patients with CRCET. The data support the importance of CRCET to improve glioblastoma patient outcomes.

8.
Cancers (Basel) ; 15(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37370784

ABSTRACT

BACKGROUND: Brain metastases (BM) are common in cancer patients and are associated with high morbidity and mortality. Surgery is an option, but the optimal selection of patients for surgery is challenging and controversial. Current prognostication tools are not ideal for preoperative prognostication. By using a reference population (derivation data set) and two external populations (validation data set) of patients who underwent surgery for BM, we aimed to create and validate a preoperative prognostic index. METHODS: The derivation data set consists of 590 patients who underwent surgery for BM (2011-2018) at Oslo University Hospital. We identified variables associated with survival and created a preoperative prognostic index with four prognostic groups, which was validated on patients who underwent surgery for BM at Karolinska University Hospital and St. Olavs University Hospital during the same time period. To reduce over-fitting, we adjusted the index in accordance with our findings. RESULTS: 438 patients were included in the validation data set. The preoperative prognostic index correctly divided patients into four true prognostic groups. The two prognostic groups with the poorest survival outcomes overlapped, and these were merged to create the adjusted preoperative prognostic index. CONCLUSION: We created a prognostic index for patients with BM that predicts overall survival preoperatively. This index might be valuable in supporting informed choice when considering surgery for BM.

9.
Neurooncol Adv ; 5(1): vdad021, 2023.
Article in English | MEDLINE | ID: mdl-37066109

ABSTRACT

Background: Biomechanical tissue properties of glioblastoma tumors are heterogeneous, but the molecular mechanisms involved and the biological implications are poorly understood. Here, we combine magnetic resonance elastography (MRE) measurement of tissue stiffness with RNA sequencing of tissue biopsies to explore the molecular characteristics of the stiffness signal. Methods: MRE was performed preoperatively in 13 patients with glioblastoma. Navigated biopsies were harvested during surgery and classified as "stiff" or "soft" according to MRE stiffness measurements (|G*|norm). Twenty-two biopsies from eight patients were analyzed by RNA sequencing. Results: The mean whole-tumor stiffness was lower than normal-appearing white matter. The surgeon's stiffness evaluation did not correlate with the MRE measurements, which suggests that these measures assess different physiological properties. Pathway analysis of the differentially expressed genes between "stiff" and "soft" biopsies showed that genes involved in extracellular matrix reorganization and cellular adhesion were overexpressed in "stiff" biopsies. Supervised dimensionality reduction identified a gene expression signal separating "stiff" and "soft" biopsies. Using the NIH Genomic Data Portal, 265 glioblastoma patients were divided into those with (n = 63) and without (n = 202) this gene expression signal. The median survival time of patients with tumors expressing the gene signal associated with "stiff" biopsies was 100 days shorter than that of patients not expressing it (360 versus 460 days, hazard ratio: 1.45, P < .05). Conclusion: MRE imaging of glioblastoma can provide noninvasive information on intratumoral heterogeneity. Regions of increased stiffness were associated with extracellular matrix reorganization. An expression signal associated with "stiff" biopsies correlated with shorter survival of glioblastoma patients.

10.
BMJ Open ; 13(3): e070071, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36940951

ABSTRACT

INTRODUCTION: The use of proton therapy increases globally despite a lack of randomised controlled trials demonstrating its efficacy and safety. Proton therapy enables sparing of non-neoplastic tissue from radiation. This is principally beneficial and holds promise of reduced long-term side effects. However, the sparing of seemingly non-cancerous tissue is not necessarily positive for isocitrate dehydrogenase (IDH)-mutated diffuse gliomas grade 2-3, which have a diffuse growth pattern. With their relatively good prognosis, yet incurable nature, therapy needs to be delicately balanced to achieve a maximal survival benefit combined with an optimised quality of life. METHODS AND ANALYSIS: PRO-GLIO (PROton versus photon therapy in IDH-mutated diffuse grade 2 and 3 GLIOmas) is an open-label, multicentre, randomised phase III non-inferiority study. 224 patients aged 18-65 years with IDH-mutated diffuse gliomas grade 2-3 from Norway and Sweden will be randomised 1:1 to radiotherapy delivered with protons (experimental arm) or photons (standard arm). First intervention-free survival at 2 years is the primary endpoint. Key secondary endpoints are fatigue and cognitive impairment, both at 2 years. Additional secondary outcomes include several survival measures, health-related quality of life parameters and health economy endpoints. ETHICS AND DISSEMINATION: To implement proton therapy as part of standard of care for patients with IDH-mutated diffuse gliomas grade 2-3, it should be deemed safe. With its randomised controlled design testing proton versus photon therapy, PRO-GLIO will provide important information for this patient population concerning safety, cognition, fatigue and other quality of life parameters. As proton therapy is considerably more costly than its photon counterpart, cost-effectiveness will also be evaluated. PRO-GLIO is approved by ethical committees in Norway (Regional Committee for Medical & Health Research Ethics) and Sweden (The Swedish Ethical Review Authority) and patient inclusion has commenced. Trial results will be published in international peer-reviewed journals, relevant conferences, national and international meetings and expert forums. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Registry (NCT05190172).


Subject(s)
Glioma , Protons , Humans , Cognition , Glioma/genetics , Glioma/radiotherapy , Norway , Quality of Life , Randomized Controlled Trials as Topic , Sweden
11.
Tidsskr Nor Laegeforen ; 143(2)2023 01 31.
Article in Norwegian | MEDLINE | ID: mdl-36718891

ABSTRACT

Glioblastoma is the most common form of primary brain cancer in adults, and the disease has a serious prognosis. Although great progress has been made in molecular characteristics, no major breakthroughs in treatment have been achieved for many years. In this article we present a clinical review of current diagnostics and treatment, as well as the challenges and opportunities inherent in developing improved and more personalised treatment.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Adult , Glioblastoma/diagnosis , Glioblastoma/therapy , Prognosis , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy
12.
Transl Oncol ; 26: 101535, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36115076

ABSTRACT

Serum-free culturing of patient-derived glioblastoma biopsies enrich for glioblastoma stem cells (GSCs) and is recognized as a disease-relevant model system in glioblastoma (GBM). We hypothesized that the temozolomide (TMZ) drug sensitivity of patient-derived GSC cultures correlates to clinical sensitivity patterns and has clinical predictive value in a cohort of GBM patients. To this aim, we established 51 individual GSC cultures from surgical biopsies from both treatment-naïve primary and pretreated recurrent GBM patients. The cultures were evaluated for sensitivity to TMZ over a dosing range achievable in normal clinical practice. Drug efficacy was quantified by the drug sensitivity score. MGMT-methylation status was investigated by pyrosequencing. Correlative, contingency, and survival analyses were performed for associations between experimental and clinical data. We found a heterogeneous response to temozolomide in the GSC culture cohort. There were significant differences in the sensitivity to TMZ between the newly diagnosed and the TMZ-treated recurrent disease (p <0.01). There was a moderate correlation between MGMT-status and sensitivity to TMZ (r=0.459, p=0.0009). The relationship between MGMT status and TMZ efficacy was statistically significant on multivariate analyses (p=0.0051). We found a predictive value of TMZ sensitivity in individual GSC cultures to patient survival (p=0.0089). We conclude that GSC-enriched cultures hold clinical and translational relevance by their ability to reflect the clinical heterogeneity in TMZ-sensitivity, substantiate the association between TMZ-sensitivity and MGMT-promotor methylation status and appear to have a stronger predictive value than MGMT-promotor methylation on clinical responses to TMZ.

13.
Eur J Radiol ; 147: 110136, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35007982

ABSTRACT

PURPOSE: Understanding how mechanical properties relate to functional changes in glioblastomas may help explain different treatment response between patients. The aim of this study was to map differences in biomechanical and functional properties between tumor and healthy tissue, to assess any relationship between them and to study their spatial distribution. METHODS: Ten patients with glioblastoma and 17 healthy subjects were scanned using MR Elastography, perfusion and diffusion MRI. Stiffness and viscosity measurements G' and G'', cerebral blood flow (CBF), apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were measured in patients' contrast-enhancing tumor, necrosis, edema, and gray and white matter, and in gray and white matter for healthy subjects. A regression analysis was used to predict CBF as a function of ADC, FA, G' and G''. RESULTS: Median G' and G'' in contrast-enhancing tumor were 13% and 37% lower than in normal-appearing white matter (P < 0.01), and 8% and 6% lower in necrosis than in contrast-enhancing tumor, respectively (P < 0.05). Tumors showed both inter-patient and intra-patient heterogeneity. Measurements approached values in normal-appearing tissue when moving outward from the tumor core, but abnormal tissue properties were still present in regions of normal-appearing tissue. Using both a linear and a random-forest model, prediction of CBF was improved by adding MRE measurements to the model (P < 0.01). CONCLUSIONS: The inclusion of MRE measurements in statistical models helped predict perfusion, with stiffer tissue associated with lower perfusion values.


Subject(s)
Brain Neoplasms , Elasticity Imaging Techniques , Glioblastoma , White Matter , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Cerebrovascular Circulation , Diffusion Magnetic Resonance Imaging , Glioblastoma/diagnostic imaging , Humans , Magnetic Resonance Imaging
14.
Acta Neurochir (Wien) ; 164(10): 2773-2780, 2022 10.
Article in English | MEDLINE | ID: mdl-35080651

ABSTRACT

BACKGROUND: Surgical resection of brain metastases improves symptoms and survival in selected patients. The benefit of gross total resection is disputed, as most patients are believed to succumb from their non-CNS tumor burden. We investigated the association between overall survival and residual tumor after surgery for single brain metastases. METHODS: We reviewed adults who underwent surgery for a single brain metastasis at a regional referral center (2011-2018). Gross total resection was defined as no visible residual tumor on cerebral MRI 12-48 h postoperatively. RESULTS: We included 373 patients. The most common primary tumors were lung cancer (36%) and melanoma (24%). We identified gross total resection in 238 patients (64%). Median overall survival was 11.0 months, 8.0 (6.2-9.8) months for patients with subtotal resection and 13.0 (9.7-16.3) months for patients with gross total resection. In a multivariate regression analysis including preoperative prognostic factors, gross total resection was associated with longer overall survival (HR: 0.66, p = 0.003). Postoperative radiotherapy administered within 6 weeks did not significantly alter the hazard ratio estimates for grade of resection. CONCLUSIONS: Our study suggests improved survival with gross total resection compared to subtotal resection. The importance of extent of resection in surgery for brain metastases should not be discarded.


Subject(s)
Brain Neoplasms , Lung Neoplasms , Adult , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Humans , Lung Neoplasms/surgery , Magnetic Resonance Imaging , Neoplasm, Residual , Retrospective Studies
15.
Neurooncol Pract ; 8(6): 706-717, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34777840

ABSTRACT

BACKGROUND: Early extensive surgery is a cornerstone in treatment of diffuse low-grade gliomas (DLGGs), and an additional survival benefit has been demonstrated from early radiochemotherapy in selected "high-risk" patients. Still, there are a number of controversies related to DLGG management. The objective of this multicenter population-based cohort study was to explore potential variations in diagnostic work-up and treatment between treating centers in 2 Scandinavian countries with similar public health care systems. METHODS: Patients screened for inclusion underwent primary surgery of a histopathologically verified diffuse WHO grade II glioma in the time period 2012 through 2017. Clinical and radiological data were collected from medical records and locally conducted research projects, whereupon differences between countries and inter-hospital variations were explored. RESULTS: A total of 642 patients were included (male:female ratio 1:4), and annual age-standardized incidence rates were 0.9 and 0.8 per 100 000 in Norway and Sweden, respectively. Considerable inter-hospital variations were observed in preoperative work-up, tumor diagnostics, surgical strategies, techniques for intraoperative guidance, as well as choice and timing of adjuvant therapy. CONCLUSIONS: Despite geographical population-based case selection, similar health care organizations, and existing guidelines, there were considerable variations in DLGG management. While some can be attributed to differences in clinical implementation of current scientific knowledge, some of the observed inter-hospital variations reflect controversies related to diagnostics and treatment. Quantification of these disparities renders possible identification of treatment patterns associated with better or worse outcomes and may thus represent a step toward more uniform evidence-based care.

16.
Neurooncol Adv ; 3(1): vdab149, 2021.
Article in English | MEDLINE | ID: mdl-34729487

ABSTRACT

BACKGROUND: Brain tumor surgery must balance the benefit of maximal resection against the risk of inflicting severe damage. The impact of increased resection is diagnosis-specific. However, the precise diagnosis is typically uncertain at surgery due to limitations of imaging and intraoperative histomorphological methods. Novel and accurate strategies for brain tumor classification are necessary to support personalized intraoperative neurosurgical treatment decisions. Here, we describe a fast and cost-efficient workflow for intraoperative classification of brain tumors based on DNA methylation profiles generated by low coverage nanopore sequencing and machine learning algorithms. METHODS: We evaluated 6 independent cohorts containing 105 patients, including 50 pediatric and 55 adult patients. Ultra-low coverage whole-genome sequencing was performed on nanopore flow cells. Data were analyzed using copy number variation and ad hoc random forest classifier for the genome-wide methylation-based classification of the tumor. RESULTS: Concordant classification was obtained between nanopore DNA methylation analysis and a full neuropathological evaluation in 93 of 105 (89%) cases. The analysis demonstrated correct diagnosis in 6/6 cases where frozen section evaluation was inconclusive. Results could be returned to the operating room at a median of 97 min (range 91-161 min). Precise classification of the tumor entity and subtype would have supported modification of the surgical strategy in 12 out of 20 patients evaluated intraoperatively. CONCLUSION: Intraoperative nanopore sequencing combined with machine learning diagnostics was robust, sensitive, and rapid. This strategy allowed DNA methylation-based classification of the tumor to be returned to the surgeon within a timeframe that supports intraoperative decision making.

17.
Acta Oncol ; 60(9): 1161-1168, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34032547

ABSTRACT

BACKGROUND: Surgical resection of brain metastases (BM) improves overall survival (OS) in selected patients. Selecting those patients likely to benefit from surgery is challenging. The Graded Prognostic Assessment (GPA) and the diagnosis-specific Graded Prognostic Assessment (ds-GPA) were developed to predict survival in patients with BM, but not specifically to guide patient selection for surgery. Our aim was to evaluate the feasibility of preoperative GPA/ds-GPA scores and assess variables associated with OS. METHODS: We retrospectively reviewed first-time surgical resection of BM from solid tumors at a Norwegian regional referral center from 2011 to 2018. RESULTS: Of 590 patients, 51% were female and median age was 63 years. Median OS was 10.3 months and 74 patients (13%) died within three months after surgery. Preoperatively tumor origin was unknown in 20% of patients. A GPA score could be calculated for 92% of the patients preoperatively, but could not correctly predict survival. A ds-GPA score could be calculated for 46% of patients. Multivariable regression analysis revealed shorter OS in patients with higher age, worse functioning status, colorectal primary cancer compared to lung cancer, presence of extracranial metastases, and more than four BM. Patients with preoperative progressive extracranial disease or synchronous BM had shorter OS compared to patients with stable extracranial disease. CONCLUSION: Ds-GPA could be calculated in less than half of patients preoperatively and GPA poorly identified patients which had minimal benefit of surgery. Including status of extracranial disease improve prognostication and therefore selection to surgery for brain metastases.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms , Lung Neoplasms , Brain Neoplasms/surgery , Female , Humans , Middle Aged , Prognosis , Retrospective Studies
18.
Neurooncol Adv ; 3(1): vdab008, 2021.
Article in English | MEDLINE | ID: mdl-33665615

ABSTRACT

BACKGROUND: The survival rates in population-based series of glioblastoma (GBM) differ substantially from those reported in clinical trials. This discrepancy may be attributed to that patients recruited to trials tend to be younger with better performance status. However, the proportion and characteristics of the patients in a population considered either eligible or ineligible for trials is unknown. The generalizability of trial results is therefore also uncertain. METHODS: Using the Cancer Registry of Norway and the Brain Tumor Database at Oslo University Hospital, we tracked all patients within a well-defined geographical area with newly diagnosed GBM during the years 2012-2017. Based on data from these registries and the medical records, the patients were evaluated for trial eligibility according to criteria employed in recent phase III trials for GBM. RESULTS: We identified 512 patients. The median survival was 11.7 months. When we selected a potential trial population at the start of concurrent chemoradiotherapy (radiotherapy [RT]/ temozolomide [TMZ]) by the parameters age (18-70 y), passed surgery for a supratentorial GBM, Eastern Cooperative Oncology Group (ECOG) ≤2, normal hematologic, hepatic and renal function, and lack of severe comorbidity, 57% of the patients were excluded. Further filtering the patients who progressed during RT/TMZ and never completed RT/TMZ resulted in exclusion of 59% and 63% of the patients, respectively. The survival of patients potentially eligible for trials was significantly higher than of the patients not fulfilling trial eligibility criteria (P < .0001). CONCLUSIONS: Patients considered eligible for phase III clinical trials represent a highly selected minority of patients in a real-world GBM population.

19.
J Magn Reson Imaging ; 53(5): 1510-1521, 2021 05.
Article in English | MEDLINE | ID: mdl-33403750

ABSTRACT

BACKGROUND: Changes in brain stiffness can be an important biomarker for neurological disease. Magnetic resonance elastography (MRE) quantifies tissue stiffness, but the results vary between acquisition and reconstruction methods. PURPOSE: To measure MRE repeatability and estimate the effect of different reconstruction methods and varying data quality on estimated brain stiffness. STUDY TYPE: Prospective. SUBJECTS: Fifteen healthy subjects. FIELD STRENGTH/SEQUENCE: 3T MRI, gradient-echo elastography sequence with a 50 Hz vibration frequency. ASSESSMENT: Imaging was performed twice in each subject. Images were reconstructed using a curl-based and a finite-element-model (FEM)-based method. Stiffness was measured in the whole brain, in white matter, and in four cortical and four deep gray matter regions. Repeatability coefficients (RC), intraclass correlation coefficients (ICC), and coefficients of variation (CV) were calculated. MRE data quality was quantified by the ratio between shear waves and compressional waves. STATISTICAL TESTS: Median values with range are presented. Reconstruction methods were compared using paired Wilcoxon signed-rank tests, and Spearman's rank correlation was calculated between MRE data quality and stiffness. Holm-Bonferroni corrections were employed to adjust for multiple comparisons. RESULTS: In the whole brain, CV was 4.3% and 3.8% for the curl and the FEM reconstruction, respectively, with 4.0-12.8% for subregions. Whole-brain ICC was 0.60-0.74, ranging from 0.20 to 0.89 in different regions. RC for the whole brain was 0.14 kPa and 0.17 kPa for the curl and FEM methods, respectively. FEM reconstruction resulted in 39% higher stiffness than the curl reconstruction (P < 0.05). MRE data quality, defined as shear-compression wave ratio, was higher in peripheral regions than in central regions of the brain (P < 0.05). No significant correlations were observed between MRE data quality and stiffness estimates. DATA CONCLUSION: MRE of the human brain is a robust technique in terms of repeatability. Caution is warranted when comparing stiffness values obtained with different techniques. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.


Subject(s)
Elasticity Imaging Techniques , Brain/diagnostic imaging , Echo-Planar Imaging , Humans , Magnetic Resonance Imaging , Prospective Studies , Reproducibility of Results
20.
Phys Med Biol ; 65(22): 225020, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33200748

ABSTRACT

Dynamic susceptibility contrast (DSC) imaging is a widely used technique for assessment of cerebral blood volume (CBV). With combined gradient-echo and spin-echo DSC techniques, measures of the underlying vessel size and vessel architecture can be obtained from the vessel size index (VSI) and vortex area, respectively. However, how noise, and specifically the contrast-to-noise ratio (CNR), affect the estimations of these parameters has largely been overlooked. In order to address this issue, we have performed simulations to generate DSC signals with varying levels of CNR, defined by the peak of relaxation rate curve divided by the standard deviation of the baseline. Moreover, DSC data from 59 brain cancer patients were acquired at two different 3 T-scanners (N = 29 and N = 30, respectively), where CNR and relative parameter maps were obtained. Our simulations showed that the measured parameters were affected by CNR in different ways, where low CNR led to overestimations of CBV and underestimations of VSI and vortex area. In addition, a higher noise-sensitivity was found in vortex area than in CBV and VSI. Results from clinical data were consistent with simulations, and indicated that CNR < 4 gives highly unreliable measurements. Moreover, we have shown that the distribution of values in the tumour regions could change considerably when voxels with CNR below a given cut off are excluded when generating the relative parameter maps. The widespread use of CBV and attractive potential of VSI and vortex area, makes the noise-sensitivity of these parameters found in our study relevant for further use and development of the DSC imaging technique. Our results suggest that the CNR has considerable impact on the measured parameters, with the potential to affect the clinical interpretation of DSC-MRI, and should therefore be taken into account in the clinical decision-making process.


Subject(s)
Blood Vessels/diagnostic imaging , Magnetic Resonance Imaging/methods , Signal-To-Noise Ratio , Adult , Brain Neoplasms/blood supply , Brain Neoplasms/diagnostic imaging , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...