Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1890): 20220451, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37778375

ABSTRACT

Protein isoforms, generated through alternative splicing or promoter usage, contribute to tissue function. Here, we characterize the expression of predicted Padi3α and Padi3ß isoforms in hair follicles and describe expression of Padi2ß, a hitherto unknown PADI2 isoform, in the oligodendrocyte lineage. Padi2ß transcription is initiated from a downstream intronic promoter, generating an N-terminally truncated, unstable, PADI2ß. By contrast to the established role of the canonical PADI2 (PADI2α) (Falcao et al. 2019 Cell Rep. 27, 1090-1102.e10. (doi:10.1016/j.celrep.2019.03.108)), PADI2ß inhibits oligodendrocyte differentiation, suggesting that PADI2 isoforms exert opposing effects on oligodendrocyte lineage progression. We localize Padi3α and Padi3ß to developing hair follicles and find that both transcripts are expressed at low levels in progenitor cells, only to increase in expression concomitant with differentiation. When expressed in vitro, PADI3α and PADI3ß are enriched in the cytoplasm and precipitate together. Whereas PADI3ß protein stability is low and PADI3ß fails to induce protein citrullination, we find that the enzymatic activity and protein stability of PADI3α is reduced in the presence of PADI3ß. We propose that PADI3ß modulates PADI3α activity by direct binding and heterodimer formation. Here, we establish expression and function of Padi2 and Padi3 isoforms, expanding on the mechanisms in place to regulate citrullination in complex tissues. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.


Subject(s)
Protein-Arginine Deiminases , Protein-Arginine Deiminases/genetics , Protein-Arginine Deiminases/metabolism , Cell Differentiation/physiology , Protein Isoforms/genetics
2.
Development ; 149(22)2022 11 15.
Article in English | MEDLINE | ID: mdl-36330928

ABSTRACT

The regulatory circuits that coordinate epidermal differentiation during development are still not fully understood. Here, we report that the transcriptional regulator ID1 is enriched in mouse basal epidermal progenitor cells and find ID1 expression to be diminished upon differentiation. In utero silencing of Id1 impairs progenitor cell proliferation, leads to precocious delamination of targeted progenitor cells and enables differentiated keratinocytes to retain progenitor markers and characteristics. Transcriptional profiling suggests that ID1 acts by mediating adhesion to the basement membrane while inhibiting spinous layer differentiation. Co-immunoprecipitation reveals ID1 binding to transcriptional regulators of the class I bHLH family. We localize bHLH Tcf3, Tcf4 and Tcf12 to epidermal progenitor cells during epidermal stratification and establish TCF3 as a downstream effector of ID1-mediated epidermal proliferation. Finally, we identify crosstalk between CEBPA, a known mediator of epidermal differentiation, and Id1, and demonstrate that CEBPA antagonizes BMP-induced activation of Id1. Our work establishes ID1 as a key coordinator of epidermal development, acting to balance progenitor proliferation with differentiation and unveils how functional crosstalk between CEBPA and Id1 orchestrates epidermal lineage progression.


Subject(s)
CCAAT-Enhancer-Binding Proteins , Inhibitor of Differentiation Protein 1 , Transcription Factors , Animals , Mice , CCAAT-Enhancer-Binding Proteins/genetics , Cell Differentiation/genetics , Cell Proliferation/genetics , Epidermis/metabolism , Inhibitor of Differentiation Protein 1/genetics , Inhibitor of Differentiation Protein 1/metabolism , Stem Cells/metabolism , Transcription Factors/metabolism
3.
Front Cell Dev Biol ; 9: 789676, 2021.
Article in English | MEDLINE | ID: mdl-34966743

ABSTRACT

In this Review article, we focus on delineating the expression and function of Peptidyl Arginine Delminases (PADIs) in the hair follicle stem cell lineage and in inflammatory alopecia. We outline our current understanding of cellular processes influenced by protein citrullination, the PADI mediated posttranslational enzymatic conversion of arginine to citrulline, by exploring citrullinomes from normal and inflamed tissues. Drawing from other stem cell lineages, we detail the potential function of PADIs and specific citrullinated protein residues in hair follicle stem cell activation, lineage specification and differentiation. We highlight PADI3 as a mediator of hair shaft differentiation and display why mutations in PADI3 are linked to human alopecia. Furthermore, we propose mechanisms of PADI4 dependent fine-tuning of the hair follicle lineage progression. Finally, we discuss citrullination in the context of inflammatory alopecia. We present how infiltrating neutrophils establish a citrullination-driven self-perpetuating proinflammatory circuitry resulting in T-cell recruitment and activation contributing to hair follicle degeneration. In summary, we aim to provide a comprehensive perspective on how citrullination modulates hair follicle regeneration and contributes to inflammatory alopecia.

4.
Front Behav Neurosci ; 10: 158, 2016.
Article in English | MEDLINE | ID: mdl-27582696

ABSTRACT

Gap detection or gap pre-pulse inhibition of the acoustic startle (GPIAS) has been successfully used in rat and guinea pig models of tinnitus, yet this system has been proven to have low efficacy in CBA mice, with low basal GPIAS and subtle tinnitus-like effects. Here, we tested five mouse strains (CBA, BalbC, CD-1, C57BL/6 and 129sv) for pre-pulse inhibition (PPI) and gap detection with varying interstimulus intervals (ISI) and found that mice from a CBA genetic background had the poorest capacities of suppressing the startle response in the presence of a pre-pulse or a gap. CD-1 mice displayed variable responses throughout all ISI. Interestingly, C57BL/6, 129sv and BalbC showed efficient suppression with either pre-pulses or gaps with shorter ISI. The glutamate aspartate transporter (GLAST) is expressed in support cells from the cochlea and buffers the excess of glutamate. We hypothesized that loss of GLAST function could sensitize the ear to tinnitus-inducing agents, such as salicylate. Using shorter ISI to obtain a greater dynamic range to assess tinnitus-like effects, we found that disruption of gap detection by salicylate was exacerbated across various intensities of a 32-kHz narrow band noise gap carrier in GLAST knockout (KO) mice when compared to their wild-type (WT) littermates. Auditory brainstem responses (ABR) and distortion-product otoacoustic emission (DPOAE) were performed to evaluate the effects on hearing functions. Salicylate caused greater auditory threshold shifts (near 15 dB) in GLAST KO mice than in WT mice across all tested frequencies, despite similarly reduced DPOAE. Despite these changes, inhibition using broad-band gap carriers and 32 kHz pre-pulses were not affected. Our study suggests that GLAST deficiency could become a useful experimental model to decipher the mechanisms underlying drug-induced tinnitus. Future studies addressing the neurological correlates of tinnitus in this model could provide additional insights into the mechanisms of tinnitus.

5.
Hear Res ; 325: 42-8, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25818515

ABSTRACT

Molecular investigations of the hearing organ, the cochlea, have been hampered due to the difficulty of isolating pure RNA and in quantities sufficient enough for quantitative real-time RT-PCR or microarray analysis. The complex architecture of the cochlea, the presence of liquids, bone and cartilage tissue, are a major hurdle in obtaining contamination-free RNA to a level that does not affect downstream applications. Here, we present a protocol to extract RNA from the mouse cochlea, with yields and quality suitable for real-time RT-PCR or Affymetrix labeling. In contrast to current methods, such as TRIZOL or column-based extraction, this protocol combines the two and, within 4 h, yields a 2 µg of total RNA from a single pair of adult mouse cochleae. This protocol allows the isolation of RNA molecules from the mammalian cochlea providing access to whole-transcript expression analyses.


Subject(s)
Cochlea/metabolism , Oligonucleotide Array Sequence Analysis , RNA/chemistry , Animals , Bone and Bones/metabolism , Cartilage/metabolism , Chloroform/chemistry , Circadian Rhythm , DNA/chemistry , Edetic Acid/chemistry , Gene Expression Profiling , Guanidines/chemistry , Mice , Microfluidics , Phenols/chemistry , Real-Time Polymerase Chain Reaction , Spectrophotometry
SELECTION OF CITATIONS
SEARCH DETAIL
...