Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Immunol ; 53(12): e2350503, 2023 12.
Article in English | MEDLINE | ID: mdl-37735713

ABSTRACT

The availability of genetically modified mice has facilitated the study of mammalian T cells. No model has yet been developed to study these cells in chickens, an important livestock species with a high availability of γδ T cells. To investigate the role of γδ and αß T cell populations in birds, we generated chickens lacking these T cell populations. This was achieved by genomic deletion of the constant region of the T cell receptor γ or ß chain, leading to a complete loss of either γδ or αß T cells. Our results show that a deletion of αß T cells but not γδ T cells resulted in a severe phenotype in KO chickens. The αß T cell KO chickens exhibited granulomas associated with inflammation of the spleen and the proventriculus. Immunophenotyping of αß T cell KO chickens revealed a significant increase in monocytes and expectedly the absence of CD4+ T cells including FoxP3+ regulatory T cells. Surprisingly there was no increase of γδ T cells. In addition, we observed a significant decrease in immunoglobulins, B lymphocytes, and changes in the bursa morphology. Our data reveal the consequences of T cell knockouts in chickens and provide new insights into their function in vertebrates.


Subject(s)
Chickens , Receptors, Antigen, T-Cell, alpha-beta , Animals , Mice , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, gamma-delta/genetics , Phenotype , B-Lymphocytes , Mammals
2.
Pharmaceutics ; 15(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36678656

ABSTRACT

Efficient wound repair is crucial for mammalian survival. Healing of skin wounds is severely hampered in diabetic patients, resulting in chronic non-healing wounds that are difficult to treat. High-mobility group box 1 (HMGB1) is an important signaling molecule that is released during wounding, thereby delaying regenerative responses in the skin. Here, we show that dissolving glycyrrhizin, a potent HMGB1 inhibitor, in water results in the formation of a hydrogel with remarkable rheological properties. We demonstrate that these glycyrrhizin-based hydrogels accelerate cutaneous wound closure in normoglycemic and diabetic mice by influencing keratinocyte migration. To facilitate topical application of glycyrrhizin hydrogels on cutaneous wounds, several concentrations of glycyrrhizinic acid in water were tested for their rheological, structural, and biological properties. By varying the concentration of glycyrrhizin, these hydrogel properties can be readily tuned, enabling customized wound care.

3.
Nat Commun ; 12(1): 5913, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34625556

ABSTRACT

OTULIN is a deubiquitinase that specifically cleaves linear ubiquitin chains. Here we demonstrate that the ablation of Otulin selectively in keratinocytes causes inflammatory skin lesions that develop into verrucous carcinomas. Genetic deletion of Tnfr1, knockin expression of kinase-inactive Ripk1 or keratinocyte-specific deletion of Fadd and Mlkl completely rescues mice with OTULIN deficiency from dermatitis and tumorigenesis, thereby identifying keratinocyte cell death as the driving force for inflammation. Single-cell RNA-sequencing comparing non-lesional and lesional skin reveals changes in epidermal stem cell identity in OTULIN-deficient keratinocytes prior to substantial immune cell infiltration. Keratinocytes lacking OTULIN display a type-1 interferon and IL-1ß response signature, and genetic or pharmacologic inhibition of these cytokines partially inhibits skin inflammation. Finally, expression of a hypomorphic mutant Otulin allele, previously shown to cause OTULIN-related autoinflammatory syndrome in humans, induces a similar inflammatory phenotype, thus supporting the importance of OTULIN for restraining skin inflammation and maintaining immune homeostasis.


Subject(s)
Endopeptidases/metabolism , Keratinocytes/metabolism , Skin/metabolism , Animals , Cell Death/genetics , Cytokines/metabolism , Endopeptidases/genetics , Fas-Associated Death Domain Protein , Gene Knock-In Techniques , Homeostasis , Inflammation/pathology , Interferon Type I , Interleukin-1beta , Mice , Necroptosis , Peptide Fragments , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Skin/pathology , Stem Cells/metabolism , Systems Analysis , Ubiquitin/metabolism
4.
EMBO Rep ; 22(5): e51573, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33780134

ABSTRACT

Fibroblasts are a major component of the microenvironment of most solid tumours. Recent research elucidated a large heterogeneity and plasticity of activated fibroblasts, indicating that their role in cancer initiation, growth and metastasis is complex and context-dependent. Here, we performed genome-wide expression analysis comparing fibroblasts in normal, inflammatory and tumour-associated skin. Cancer-associated fibroblasts (CAFs) exhibit a fibrotic gene signature in wound-induced tumours, demonstrating persistent extracellular matrix (ECM) remodelling within these tumours. A top upregulated gene in mouse CAFs encodes for PRSS35, a protease capable of collagen remodelling. In human skin, we observed PRSS35 expression uniquely in the stroma of high-grade squamous cell carcinomas. Ablation of PRSS35 in mouse models of wound- or chemically-induced tumorigenesis resulted in aberrant collagen composition in the ECM and increased tumour incidence. Our results indicate that fibrotic enzymes expressed by CAFs can regulate squamous tumour initiation by remodelling the ECM.


Subject(s)
Extracellular Matrix , Fibroblasts , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Fibrosis , Mice , Skin , Tumor Microenvironment/genetics
5.
Cell Rep ; 29(9): 2689-2701.e4, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31775038

ABSTRACT

Regenerative responses predispose tissues to tumor formation by largely unknown mechanisms. High-mobility group box 1 (HMGB1) is a danger-associated molecular pattern contributing to inflammatory pathologies. We show that HMGB1 derived from keratinocytes, but not myeloid cells, delays cutaneous wound healing and drives tumor formation. In wounds of mice lacking HMGB1 selectively in keratinocytes, a marked reduction in neutrophil extracellular trap (NET) formation is observed. Pharmacological targeting of HMGB1 or NETs prevents skin tumorigenesis and accelerates wound regeneration. HMGB1-dependent NET formation and skin tumorigenesis is orchestrated by tumor necrosis factor (TNF) and requires RIPK1 kinase activity. NETs are present in the microenvironment of keratinocyte-derived tumors in mice and lesional and tumor skin of patients suffering from recessive dystrophic epidermolysis bullosa, a disease in which skin blistering predisposes to tumorigenesis. We conclude that tumorigenicity of the wound microenvironment depends on epithelial-derived HMGB1 regulating NET formation, thereby establishing a mechanism linking reparative inflammation to tumor initiation.


Subject(s)
Extracellular Traps/metabolism , Neutrophils/metabolism , Skin/pathology , HMGB1 Protein/metabolism , Humans , Tumor Microenvironment , Wound Healing
6.
Nat Commun ; 9(1): 2036, 2018 05 23.
Article in English | MEDLINE | ID: mdl-29789522

ABSTRACT

Microglia, the mononuclear phagocytes of the central nervous system (CNS), are important for the maintenance of CNS homeostasis, but also critically contribute to CNS pathology. Here we demonstrate that the nuclear factor kappa B (NF-κB) regulatory protein A20 is crucial in regulating microglia activation during CNS homeostasis and pathology. In mice, deletion of A20 in microglia increases microglial cell number and affects microglial regulation of neuronal synaptic function. Administration of a sublethal dose of lipopolysaccharide induces massive microglia activation, neuroinflammation, and lethality in mice with microglia-confined A20 deficiency. Microglia A20 deficiency also exacerbates multiple sclerosis (MS)-like disease, due to hyperactivation of the Nlrp3 inflammasome leading to enhanced interleukin-1ß secretion and CNS inflammation. Finally, we confirm a Nlrp3 inflammasome signature and IL-1ß expression in brain and cerebrospinal fluid from MS patients. Collectively, these data reveal a critical role for A20 in the control of microglia activation and neuroinflammation.


Subject(s)
Inflammasomes/immunology , Microglia/immunology , Multiple Sclerosis/immunology , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Adult , Aged , Aged, 80 and over , Animals , Brain/immunology , Brain/pathology , Disease Models, Animal , Female , Humans , Interleukin-1beta/metabolism , Lipopolysaccharides/immunology , Male , Mice , Microglia/pathology , Middle Aged , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Signal Transduction/immunology , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...