Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Struct Biotechnol J ; 23: 1641-1653, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38680869

ABSTRACT

Protein generation has numerous applications in designing therapeutic antibodies and creating new drugs. Still, it is a demanding task due to the inherent complexities of protein structures and the limitations of current generative models. Proteins possess intricate geometry, and sampling their conformational space is challenging due to its high dimensionality. This paper introduces novel Markovian and non-Markovian generative diffusion models based on fractional stochastic differential equations and the Lévy distribution, allowing for a more effective exploration of the conformational space. The approach is applied to a dataset of 40,000 proteins and evaluated in terms of Fréchet distance, fidelity, and diversity, outperforming the state-of-the-art by 25.4%, 35.8%, and 11.8%, respectively.

2.
Comput Struct Biotechnol J ; 21: 1324-1348, 2023.
Article in English | MEDLINE | ID: mdl-36817951

ABSTRACT

Proteins mainly perform their functions by interacting with other proteins. Protein-protein interactions underpin various biological activities such as metabolic cycles, signal transduction, and immune response. However, due to the sheer number of proteins, experimental methods for finding interacting and non-interacting protein pairs are time-consuming and costly. We therefore developed the ProtInteract framework to predict protein-protein interaction. ProtInteract comprises two components: first, a novel autoencoder architecture that encodes each protein's primary structure to a lower-dimensional vector while preserving its underlying sequence attributes. This leads to faster training of the second network, a deep convolutional neural network (CNN) that receives encoded proteins and predicts their interaction under three different scenarios. In each scenario, the deep CNN predicts the class of a given encoded protein pair. Each class indicates different ranges of confidence scores corresponding to the probability of whether a predicted interaction occurs or not. The proposed framework features significantly low computational complexity and relatively fast response. The contributions of this work are twofold. First, ProtInteract assimilates the protein's primary structure into a pseudo-time series. Therefore, we leverage the nature of the time series of proteins and their physicochemical properties to encode a protein's amino acid sequence into a lower-dimensional vector space. This approach enables extracting highly informative sequence attributes while reducing computational complexity. Second, the ProtInteract framework utilises this information to identify protein interactions with other proteins based on its amino acid configuration. Our results suggest that the proposed framework performs with high accuracy and efficiency in predicting protein-protein interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...