Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Phytomedicine ; 126: 155460, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394731

ABSTRACT

BACKGROUND: Multidrug resistance is the major obstacle to cancer chemotherapy. Modulation of P-glycoprotein and drug combination approaches have been considered important strategies to overcome drug resistance. PURPOSE: Aiming at generating a small library of Amaryllidaceae-type alkaloids to overcome drug resistance, two major alkaloids, isolated from Pancratium maritimum, lycorine (1), and 2α-10bα-dihydroxy-9-O-demethylhomolycorine (2), were derivatized, giving rise to nineteen derivatives (3 - 21). METHODS: The main chemical transformation of lycorine resulted from the cleavage of ring E of the diacetylated lycorine derivative (3) to obtain compounds that have carbamate and amine functions (5 - 16), while acylation of compound 2 provided derivatives 17 - 21. Compounds 1 - 21 were evaluated for their effects on cytotoxicity, and drug resistance reversal, using resistant human ovarian carcinoma cells (HOC/ADR), overexpressing P-glycoprotein (P-gp/ABCB1), as model. RESULTS: Excluding lycorine (1) (IC50 values of 1.2- 2.5 µM), the compounds were not cytotoxic or showed moderate/weak cytotoxicity. Chemo-sensitization assays were performed by studying the in vitro interaction between the compounds and the anticancer drug doxorubicin. Most of the compounds have shown synergistic interactions with doxorubicin. Compounds 5, 6, 9 - 14, bearing both carbamate and aromatic amine moieties, were found to have the highest sensitization rate, reducing the dose of doxorubicin 5-35 times, highlighting their potential to reverse drug resistance in combination chemotherapy. Selected compounds (4 - 6, 9 - 14, and 21), able of re-sensitizing resistant cancer cells, were further evaluated as P-gp inhibitors. Compound 11, which has a para­methoxy-N-methylbenzylamine moiety, was the strongest inhibitor. In the ATPase assay, compounds 9-11 and 13 behaved as verapamil, suggesting competitive inhibition of P-gp. At the same time, none of these compounds affected P-gp expression at the mRNA or protein level. CONCLUSIONS: This study provided evidence of the potential of Amaryllidaceae alkaloids as lead candidates for the development of MDR reversal agents.


Subject(s)
Adenocarcinoma , Alkaloids , Amaryllidaceae Alkaloids , Antineoplastic Agents , Phenanthridines , Humans , Amaryllidaceae Alkaloids/pharmacology , Drug Resistance, Neoplasm , Antineoplastic Agents/pharmacology , Doxorubicin/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , Alkaloids/pharmacology , Carbamates/pharmacology , Cell Line, Tumor
2.
Sci Rep ; 13(1): 18536, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37898679

ABSTRACT

Lilial (also called lysmeral) is a fragrance ingredient presented in many everyday cosmetics and household products. The concentrations of lilial in the final products is rather low. Its maximum concentration in cosmetics was limited and recently, its use in cosmetics products was prohibited in the EU due to the classification as reproductive toxicant. Additionally, according to the European Chemicals Agency, it was under assessment as one of the potential endocrine disruptors, i.e. a substance that may alter the function of the endocrine system and, as a result, cause health problems. Its ability to act as an androgen receptor agonist and the estrogenic and androgenic activity of its metabolites, to the best of our knowledge, have not yet been tested. The aim of this work was to determine the intestinal absorption, cytotoxicity, nephrotoxicity, mutagenicity, activation of cellular stress-related signal pathways and, most importantly, to test the ability to disrupt the endocrine system of lilial and its Phase I metabolites. This was tested using set of in vitro assays including resazurin assay, the CHO/HPRT mutation assay, γH2AX biomarker-based genotoxicity assay, qPCR and in vitro reporter assays based on luminescence of luciferase for estrogen, androgen, NF-κB and NRF2 signalling pathway. It was determined that neither lilial nor its metabolites have a negative effect on cell viability in the concentration range from 1 nM to 100 µM. Using human cell lines HeLa9903 and MDA-kb2, it was verified that this substance did not have agonistic activity towards estrogen or androgen receptor, respectively. Lilial metabolites, generated by incubation with the rat liver S9 fraction, did not show the ability to bind to estrogen or androgen receptors. Neither lilial nor its metabolites showed a nephrotoxic effect on human renal tubular cells (RPTEC/TERT1 line) and at the same time they were unable to activate the NF-κB and NRF2 signalling pathway at a concentration of 50 µM (HEK 293/pGL4.32 or pGL4.37). Neither lilial nor its metabolites showed mutagenic activity in the HPRT gene mutation test in CHO-K1 cells, nor were they able to cause double-strand breaks in DNA (γH2AX biomarker) in CHO-K1 and HeLa cells. In our study, no negative effects of lilial or its in vitro metabolites were observed up to 100 µM using different in vitro tests.


Subject(s)
Hypoxanthine Phosphoribosyltransferase , NF-kappa B , Humans , Rats , Animals , HeLa Cells , HEK293 Cells , NF-E2-Related Factor 2 , Estrogens/toxicity , Estrogens/metabolism , Androgens , Biomarkers
3.
Chem Commun (Camb) ; 59(69): 10404-10407, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37551910

ABSTRACT

Elevated levels of galectin-3 are associated with tumorigenesis. Its inhibition with high-affinity carbohydrate ligands opens new therapeutic routes. Targeting of intracellular galectin-3 is challenging for polar inhibitors like carbohydrates. We demonstrate the potential of novel biomedical research tools, glycocalix[4]arenes, to enter epithelial cells, which may allow their interaction with galectin-3.


Subject(s)
Galectin 3 , Glycocalyx , Galectins , Carbohydrates/pharmacology , Cell Membrane
4.
Int J Pharm ; 643: 123202, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37406946

ABSTRACT

Cannabidiol (CBD) is the non-psychoactive component of the plant Cannabis sativa (L.) that has great anti-inflammatory benefits and wound healing effects. However, its high lipophilicity, chemical instability, and extensive metabolism impair its bioavailability and clinical use. Here, we report on the preparation of a human cornea substitute in vitro and validate this substitute for the evaluation of drug penetration. CBD nanoemulsion was developed and evaluated for stability and biological activity. The physicochemical properties of CBD nanoemulsion were maintained during storage for 90 days under room conditions. In the scratch assay, nanoformulation showed significantly ameliorated wound closure rates compared to the control and pure CBD. Due to the lower cytotoxicity of nanoformulated CBD, a higher anti-inflammatory activity was demonstrated. Neither nanoemulsion nor pure CBD can penetrate the cornea after the four-hour apical treatment. For nanoemulsion, 94 % of the initial amount of CBD remained in the apical compartment while only 54 % of the original amount of pure CBD was detected in the apical medium, and 7 % in the cornea, the rest was most likely metabolized. In summary, the nanoemulsion developed in this study enhanced the stability and biological activity of CBD.


Subject(s)
Cannabidiol , Humans , Cannabidiol/chemistry , Biological Availability , Wound Healing , Anti-Inflammatory Agents/pharmacology , Cornea
5.
J Ethnopharmacol ; 312: 116484, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37044231

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Salvia officinalis L., Sambucus nigra L., Matricaria chamomilla L., Agrimonia eupatoria L., Fragaria vesca L. and Malva sylvestris L. are plants that have a long tradition in European folk medicine. To this day, they are part of medicinal teas or creams that help with the healing of skin wounds and the treatment of respiratory or intestinal infections. However, so far these plants have not been investigated more deeply than in their direct antibacterial effect. AIM OF THE STUDY: Our research is focused on adjuvants that inhibit the mechanism of antibiotic resistance or modulate bacterial virulence. Based on a preliminary screening of 52 European herbs, which commonly appear as part of tea blends or poultice. Six of them were selected for their ability to revert the resistant phenotype of nosocomial bacterial strains. METHODS: Herbs selected for this study were obtained from commercially available sources. For the extraction of active compounds ethanol was used. Modulation of virulence was observed as an ability to inhibit bacterial cell-to-cell communication using two mutant sensor strains of Vibrio campbellii. Biofilm formation, and planktonic cell adhesion was measured using a static antibiofilm test. Ethidium bromide assay was used to checked the potential of inhibition bacterial efflux pumps. The antibacterial activities of the herbs were evaluated against resistant bacterial strains using macro dilution methods. RESULTS: Alcohol extracts had antibacterial properties mainly against Gram-positive bacteria. Of all of them, the highest antimicrobial activity demonstrated Malva sylvestris, killing both antibiotic resistant bacteria; Staphylococcus aureus with MIC of 0.8 g/L and Pseudomonas aeruginosa 0.7 g/L, respectively. Fragaria vesca extract (0.08 g/L) demonstrated strong synergism with colistin (4 mg/L) in modulating the resistant phenotype to colistin of Pseudomonas aeruginosa. Similarly, the extract of S. officinalis (0.21 g/L) reverted resistance to gentamicin (1 mg/L) in S. aureus. However, Sambucus nigra and Matricaria chamomilla seem to be a very promising source of bacterial efflux pump inhibitors. CONCLUSION: The extract of F. vesca was the most active. It was able to reduce biofilm formation probably due to the ability to decrease bacterial quorum sensing. On the other hand, the activity of S. nigra or M. chamomilla in reducing bacterial virulence may be explained by the ability to inhibit bacterial efflux systems. All these plants have potential as an adjuvant for the antibiotic treatment.


Subject(s)
Plants, Medicinal , Staphylococcus aureus , Plant Extracts/pharmacology , Virulence , Colistin/pharmacology , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Bacteria , Pseudomonas aeruginosa , Biofilms
6.
Toxins (Basel) ; 15(4)2023 04 01.
Article in English | MEDLINE | ID: mdl-37104201

ABSTRACT

(1) Background: The detection of DNA double-strand breaks in vitro using the phosphorylated histone biomarker (γH2AX) is an increasingly popular method of measuring in vitro genotoxicity, as it is sensitive, specific and suitable for high-throughput analysis. The γH2AX response is either detected by flow cytometry or microscopy, the latter being more accessible. However, authors sparsely publish details, data, and workflows from overall fluorescence intensity quantification, which hinders the reproducibility. (2) Methods: We used valinomycin as a model genotoxin, two cell lines (HeLa and CHO-K1) and a commercial kit for γH2AX immunofluorescence detection. Bioimage analysis was performed using the open-source software ImageJ. Mean fluorescent values were measured using segmented nuclei from the DAPI channel and the results were expressed as the area-scaled relative fold change in γH2AX fluorescence over the control. Cytotoxicity is expressed as the relative area of the nuclei. We present the workflows, data, and scripts on GitHub. (3) Results: The outputs obtained by an introduced method are in accordance with expected results, i.e., valinomycin was genotoxic and cytotoxic to both cell lines used after 24 h of incubation. (4) Conclusions: The overall fluorescence intensity of γH2AX obtained from bioimage analysis appears to be a promising alternative to flow cytometry. Workflow, data, and script sharing are crucial for further improvement of the bioimage analysis methods.


Subject(s)
DNA Damage , Microscopy , Humans , Pilot Projects , Valinomycin/toxicity , Reproducibility of Results , HeLa Cells , Biomarkers/analysis
7.
Int J Mol Sci ; 23(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36499444

ABSTRACT

A library of previously unknown halogenated derivatives of flavonolignans (silybins A and B, 2,3-dehydrosilybin, silychristin A, and 2,3-dehydrosilychristin A) was prepared. The effect of halogenation on the biological activity of flavonolignans was investigated. Halogenated derivatives had a significant effect on bacteria. All prepared derivatives inhibited the AI-2 type of bacterial communication (quorum sensing) at concentrations below 10 µM. All prepared compounds also inhibited the adhesion of bacteria (Staphyloccocus aureus and Pseudomonas aeruginosa) to the surface, preventing biofilm formation. These two effects indicate that the halogenated derivatives are promising antibacterial agents. Moreover, these derivatives acted synergistically with antibiotics and reduced the viability of antibiotic-resistant S. aureus. Some flavonolignans were able to reverse the resistant phenotype to a sensitive one, implying that they modulate antibiotic resistance.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Quorum Sensing , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa , Bacteria , Biofilms
8.
RSC Adv ; 12(47): 30386-30403, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36349158

ABSTRACT

It is generally recognized that the stability of nanoparticles (NPs) has a great impact on their potential biological applications. Despite this, very few studies have investigated the change in toxicity of NPs over time but none has studied the periodic physicochemical changes contributing to it. To address this, we analyzed the effects of long-term storage on the physicochemical changes of green synthesized silver nanoparticles (AgNPs) that directly influences their antimicrobial durability. Light-induced slow synthesis of AgNPs was carried out using Saraca asoca aqueous leaf extract. The synthesis was optimized with respect to parameters known to play a major role in the long-term stability of AgNPs: pH, temperature, light exposure time, AgNO3 concentration, extract proportion in the reaction mixture and storage conditions. Freshly synthesized AgNPs were characterized and then stored under optimized conditions. UV-vis spectrophotometry, AAS, conventional TEM and HR-TEM along with EDX spectroscopy were used at regular intervals to test the physicochemical properties that influence their long-term stability. Broth dilution assay was used to test antimicrobial activity of AgNPs against Escherichia coli and Staphylococcus aureus. Under dark storage conditions at room temperature, the AgNPs exhibited excellent stability with very good dispersity, throughout the study period of 18 months, despite the particles undergoing physicochemical changes in largescale. AgNPs exhibited sufficient antimicrobial activity against both strains tested. Due to the stronger stabilizing effect of the extract, we observed the lowest inhibition of E. coli and S. aureus by the freshly synthesized and 15 day old AgNPs; however, the inhibition rate escalated after a month and the highest rate of inhibition was observed with the particles between 2 months to 6 months of storage. After 6 months, we observed the particles losing their antimicrobial potential gradually, that lasted throughout the rest of our study period. This observation was in accord with the physicochemical changes that AgNPs were undergoing with time. By deepening our understanding of the changes in the physicochemical properties of green synthesized AgNPs over time, this study contributes to the development of more effective, durable, and potent AgNPs.

9.
J Sep Sci ; 45(24): 4388-4396, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36222229

ABSTRACT

For the understanding of pathological states of bone tissues in oral surgery, it would be desirable to have the possibility to simulate these processes on bone cell models in vitro. These cultures, similarly to bone tissues, contain numerous proteins entrapped in the insoluble matrix. The major goal of this study was to verify whether a method based on direct in-matrix protein digestion could be suitable for the discrimination between different induced pathological states of bone cell models cultivated in vitro. Using in-sample specific protein digestion with trypsin followed by liquid chromatography-tandem mass spectrometry analysis of released peptides, 446 proteins (in average per sample) were identified in a bone cell in vitro model with induced cancer, 440 proteins were found in a model with induced inflammation, 451 proteins were detected in control in vitro culture, and 491 proteins were distinguished in samples of vestibular laminas of maxillary bone tissues originating from six different patients. Subsequent partial least squares - discrimination analysis of obtained liquid chromatography-tandem mass spectrometry data was able to discriminate among in vitro cultures with induced cancer, with induced inflammation, and control cultivation. Thus, the direct in-sample protein digestion by trypsin followed by liquid chromatography-tandem mass spectrometry analysis of released specific peptide fragments from the insoluble matrix and mathematical analysis of the mass spectrometry data seems to be a promising tool for the routine proteomic characterization of in vitro human bone models with induced different pathological states.


Subject(s)
Oral Surgical Procedures , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Trypsin/chemistry , Proteomics/methods , Proteolysis , Chromatography, Liquid/methods , Peptides/analysis , Proteins/chemistry , Inflammation
10.
J Agric Food Chem ; 70(38): 11833-11843, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36103343

ABSTRACT

Potatoes (Solanum tuberosum) are one of the most important crops worldwide. However, its production and nutrient content are endangered by both biotic and abiotic stresses. The main yield losses are caused by pest damage (e.g., Colorado potato beetle and aphids), virus disease (e.g., Potato leafroll virus and Potato viruses Y and X), or oomycete pathogens (like Phytophthora infestans), which also significantly affect the production of antinutrients and toxic metabolites of plants. Therefore, the use of genetic engineering could be an efficient tool, not harmful to the environment, and beneficial to the consumer. In this review, we focus on the main sources of problems in the field of potato production according to approved genetic modifications, their traditional solution and positive impact of gene transfection reducing economic losses, use of insecticides, and improving the nutritional properties of potatoes. We summarize all transgenic events that have been performed on potatoes and have been approved for cultivation and/or direct use or processing as feed or food.


Subject(s)
Insecticides , Phytophthora infestans , Solanum tuberosum , Animals , Food Safety , Phytophthora infestans/genetics , Plant Diseases/genetics , Plant Diseases/prevention & control , Plants, Genetically Modified/genetics , Solanum tuberosum/genetics
11.
Drug Resist Updat ; 63: 100844, 2022 07.
Article in English | MEDLINE | ID: mdl-35533630

ABSTRACT

Selenium is an essential trace element that is crucial for cellular antioxidant defense against reactive oxygen species (ROS). Recently, many selenium-containing compounds have exhibited a wide spectrum of biological activities that make them promising scaffolds in Medicinal Chemistry, and, in particular, in the search for novel compounds with anticancer activity. Similarly, certain tellurium-containing compounds have also exhibited substantial biological activities. Here we provide an overview of the biological activities of seleno- and tellurocompounds including chemopreventive activity, antioxidant or pro-oxidant activity, modulation of the inflammatory processes, induction of apoptosis, modulation of autophagy, inhibition of multidrug efflux pumps such as P-gp, inhibition of cancer metastasis, selective targeting of tumors and enhancement of the cytotoxic activity of chemotherapeutic drugs, as well as overcoming tumor drug resistance. A review of the chemistry of the most relevant seleno- or tellurocompounds with activity against resistant cancers is also presented, paying attention to the synthesis of these compounds and to the preparation of bioactive selenium or tellurium nanoparticles. Based on these data, the use of these seleno- and tellurocompounds is a promising approach in the development of strategies that can drive forward the search for novel therapies or adjuvants of current therapies against drug-resistant cancers.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Selenium , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Humans , Neoplasms/drug therapy , Reactive Oxygen Species , Selenium/chemistry , Selenium/pharmacology , Selenium/therapeutic use , Tellurium/chemistry , Tellurium/pharmacology , Tellurium/therapeutic use
12.
Sci Rep ; 12(1): 6548, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35449387

ABSTRACT

Long-term treatment of cancer with chemotherapeutics leads to the development of resistant forms that reduce treatment options. The main associated mechanism is the overexpression of transport proteins, particularly P-glycoprotein (P-gp, ABCB1). In this study, we have tested the anticancer and multidrug resistance (MDR) modulation activity of 15 selenocompounds. Out of the tested compounds, K3, K4, and K7 achieved the highest sensitization rate in ovarian carcinoma cells (HOC/ADR) that are resistant to the action of the Adriamycin. These compounds induced oxidation stress, inhibited P-gp transport activity and altered ABC gene expression. To verify the effect of compounds, 3D cell models were used to better mimic in vivo conditions. K4 and K7 triggered the most significant ROS release. All selected selenoesters inhibited P-gp efflux in a dose-dependent manner while simultaneously altering the expression of the ABC genes, especially P-gp in paclitaxel-resistant breast carcinoma cells (MCF-7/PAX). K4, and K7 demonstrated sensitization potential in resistant ovarian spheroids. Additionally, all selected selenoesters achieved a high cytotoxic effect in 3D breast and ovarian models, which was comparable to that in 2D cultures. K7 was the only non-competitive P-gp inhibitor, and therefore appears to have considerable potential for the treatment of drug-resistant cancer.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Cell Line, Tumor , Doxorubicin/pharmacology , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Female , Humans , Ketones/pharmacology
13.
Biomed Pharmacother ; 149: 112806, 2022 May.
Article in English | MEDLINE | ID: mdl-35303568

ABSTRACT

Antibiotic resistance is currently a serious health problem. Since the discovery of new antibiotics no longer seems to be a sufficient tool in the fight against multidrug-resistant infections, adjuvant (combination) therapy is gaining in importance as well as reducing bacterial virulence. Silymarin is a complex of flavonoids and flavonolignans known for its broad spectrum of biological activities, including its ability to modulate drug resistance in cancer. This work aimed to test eleven, optically pure silymarin flavonolignans for their ability to reverse the multidrug resistance phenotype of Staphylococcus aureus and reduce its virulence. Silybin A, 2,3-dehydrosilybin B, and 2,3-dehydrosilybin AB completely reversed antibiotic resistance at concentrations of 20 µM or less. Both 2,3-dehydrosilybin B and AB decreased the antibiotic-induced gene expression of representative efflux pumps belonging to the major facilitator (MFS), multidrug and toxic compound extrusion (MATE), and ATP-binding cassette (ABC) families. 2,3-Dehydrosilybin B also inhibited ethidium bromide accumulation and efflux in a clinical isolate whose NorA and MdeA overproduction was induced by antibiotics. Most of the tested flavonolignans reduced cell-to-cell communication on a tetrahydrofuran-borate (autoinducer-2) basis, with isosilychristin leading the way followed by 2,3-dehydrosilybin A and AB, which halved communication at 10 µM. Anhydrosilychristin was the only compound that reduced communication based on acyl-homoserine lactone (autoinducer 1), with an IC50 of 4.8 µM. Except for isosilychristin and anhydrosilychristin, all of the flavonolignans inhibited S. aureus surface colonization, with 2,3-dehydrosilybin A being the most active (IC50 10.6 µM). In conclusion, the selected flavonolignans, particularly derivatives of 2,3-dehydrosilybin B, 2,3-dehydrosilybin AB, and silybin A are non-toxic modulators of S. aureus multidrug resistance and can decrease the virulence of the bacterium, which deserves further detailed research.


Subject(s)
Silymarin , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Humans , Silybin/pharmacology , Silymarin/chemistry , Silymarin/pharmacology , Staphylococcus aureus , Virulence
14.
J Appl Genet ; 63(1): 145-157, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34448102

ABSTRACT

Currently, it is clear that the luxS gene has an impact on the process of biofilm formation in Campylobacter jejuni. However, even within the species, naturally occurring strains of Campylobacter lacking the luxS gene exist, which can form biofilms. In order to better understand the genetic determinants and the role of quorum sensing through the LuxS/AI-2 pathway in biofilm formation, a set of mutant/complemented strains of C. jejuni 81-176 were prepared. Additionally, the impact of the mutagenic strategy used against the luxS gene was investigated. Biofilm formation was affected by both the presence and absence of the luxS gene, and by the mutagenic strategy used. Analysis by CLSM showed that all mutant strains formed significantly less biofilm mass when compared to the wild-type. Interestingly, the deletion mutant (∆luxS) showed a larger decrease in biofilm mass than the substitution (∙luxS) and insertional inactivated ([Formula: see text]luxS) mutants, even though all the mutant strains lost the ability to produce autoinducer-2 molecules. Moreover, the biofilm of the ∆luxS mutant lacked the characteristic microcolonies observed in all other strains. The complementation of all mutant strains resulted in restored ability to produce AI-2, to form a complex biofilm, and to develop microcolonies at the level of the wild-type.


Subject(s)
Campylobacter jejuni , Bacterial Proteins/genetics , Biofilms , Campylobacter jejuni/genetics , Carbon-Sulfur Lyases/genetics , Mutagens , Quorum Sensing/genetics
15.
Antioxidants (Basel) ; 10(12)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34943100

ABSTRACT

The peumo (Cryptocarya alba) is a native fruit from central Chile that belongs to the Lauraceae family. To characterize the development and the potential health benefits of this edible fruit, quality and physiological parameters, along with antioxidant capacity, were evaluated during three clearly defined developmental stages of the fruit in two seasons. The most distinguishable attributes of ripe fruit were the change in size and color. Low CO2 production and no detectable ethylene levels suggested non-climacteric behavior of the peumo fruit. Peumo demonstrate a significant increase in their antioxidant capacity per 1 g of fresh weight (FW) of the sample, from small to ripe fruit. Higher values in ripe fruit (FRAP: 37.1-38.3 µmol FeSO4/gFW, TEAC: 7.9-8.1 mmol TE/gFW, DPPH: 8.4-8.7 IC50 µg/mL, and ORAC: = 0.19-0.20 mmol TE/gFW) were observed than those in blueberry fruit (FRAP: 4.95 µmol FeSO4/gFW, TEAC: 1.25 mmol TE/gFW, DPPH: 11.3 IC50 µg/mL, and ORAC: 0.032 mmol TE/ gFW). The methanol extracts of ripe fruit displayed the presence of polyphenol acids and quercetin, an ORAC value of 0.637 ± 0.061 mmol TE per g dried weight (DW), and a high cellular antioxidant and anti-inflammatory potential, the latter exceeding the effect of quercetin and indomethacin used as standard molecules. Also, the assay of isolated rat aorta with endothelium-dependent relaxation damage demonstrated that the peumo extract induced vascular protection, depending on its concentration under a high glucose condition. These results demonstrate that these endemic fruits have a good chance as ingredients or foods with functional properties.

16.
Int J Mol Sci ; 22(21)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34768739

ABSTRACT

In the food industry, the increasing antimicrobial resistance of food-borne pathogens to conventional sanitizers poses the risk of food contamination and a decrease in product quality and safety. Therefore, we explored alternative antimicrobials N-Acetyl-l-cysteine (NAC), rhamnolipids (RLs), and usnic acid (UA) as a novel approach to prevent biofilm formation and reduce existing biofilms formed by important food-borne pathogens (three strains of Salmonella enterica and two strains of Escherichia coli, Listeria monocytogenes, Staphylococcus aureus). Their effectiveness was evaluated by determining minimum inhibitory concentrations needed for inhibition of bacterial growth, biofilm formation, metabolic activity, and biofilm reduction. Transmission electron microscopy and confocal scanning laser microscopy followed by image analysis were used to visualize and quantify the impact of tested substances on both planktonic and biofilm-associated cells. The in vitro cytotoxicity of the substances was determined as a half-maximal inhibitory concentration in five different cell lines. The results indicate relatively low cytotoxic effects of NAC in comparison to RLs and UA. In addition, NAC inhibited bacterial growth for all strains, while RLs showed overall lower inhibition and UA inhibited only the growth of Gram-positive bacteria. Even though tested substances did not remove the biofilms, NAC represents a promising tool in biofilm prevention.


Subject(s)
Acetylcysteine/pharmacology , Benzofurans/pharmacology , Foodborne Diseases/drug therapy , Glycolipids/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Biofilms/drug effects , Cell Line , Escherichia coli/drug effects , Food Contamination/prevention & control , Food Microbiology/methods , Foodborne Diseases/microbiology , Humans , Listeria monocytogenes/drug effects , Microbial Sensitivity Tests , Salmonella enterica/drug effects , Staphylococcus aureus/drug effects
17.
Antioxidants (Basel) ; 10(10)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34679668

ABSTRACT

The 'gold standard' treatment of severe neonatal jaundice is phototherapy with blue-green light, which produces more polar photo-oxidation products that are easily excreted via the bile or urine. The aim of this study was to compare the effects of bilirubin (BR) and its major photo-oxidation product lumirubin (LR) on the proliferation, differentiation, morphology, and specific gene and protein expressions of self-renewing human pluripotent stem cell-derived neural stem cells (NSC). Neither BR nor LR in biologically relevant concentrations (12.5 and 25 µmol/L) affected cell proliferation or the cell cycle phases of NSC. Although none of these pigments affected terminal differentiation to neurons and astrocytes, when compared to LR, BR exerted a dose-dependent cytotoxicity on self-renewing NSC. In contrast, LR had a substantial effect on the morphology of the NSC, inducing them to form highly polar rosette-like structures associated with the redistribution of specific cellular proteins (ß-catenin/N-cadherin) responsible for membrane polarity. This observation was accompanied by lower expressions of NSC-specific proteins (such as SOX1, NR2F2, or PAX6) together with the upregulation of phospho-ERK. Collectively, the data indicated that both BR and LR affect early human neurodevelopment in vitro, which may have clinical relevance in phototherapy-treated hyperbilirubinemic neonates.

18.
Molecules ; 26(19)2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34641569

ABSTRACT

Fighting resistance to antibiotics and chemotherapeutics has brought bioactive peptides to the fore. Peptaibols are short α-aminoisobutyric acid-containing peptides produced by Trichoderma species. Here, we studied the production of peptaibols by Trichoderma atroviride O1 and evaluated their antibacterial and anticancer activity against drug-sensitive and multidrug-resistant bacterium and cancer cell lines. This was substantiated by an analysis of the activity of the peptaibol synthetase-encoding gene. Atroviridins, 20-residue peptaibols were detected using MALDI-TOF mass spectrometry. Gram-positive bacteria were susceptible to peptaibol-containing extracts of T. atroviride O1. A synergic effect of extract constituents was possible, and the biolo-gical activity of extracts was pronounced in/after the peak of peptaibol synthetase activity. The growth of methicillin-resistant Staphylococcus aureus was reduced to just under 10% compared to the control. The effect of peptaibol-containing extracts was strongly modulated by the lipoteichoic acid and only slightly by the horse blood serum present in the cultivation medium. Peptaibol-containing extracts affected the proliferation of human breast cancer and human ovarian cancer cell lines in a 2D model, including the multidrug-resistant sublines. The peptaibols influenced the size and compactness of the cell lines in a 3D model. Our findings indicate the molecular basis of peptaibol production in T. atroviride O1 and the potential of its peptaibol-containing extracts as antimicrobial/anticancer agents.


Subject(s)
Drug Resistance, Bacterial , Hypocreales/metabolism , Ligases/metabolism , Methicillin-Resistant Staphylococcus aureus/drug effects , Neoplasms/drug therapy , Peptaibols/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Female , Fungal Proteins/metabolism , Horses , Humans , Hypocreales/enzymology , MCF-7 Cells , Peptaibols/analysis , Peptaibols/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
19.
Cancers (Basel) ; 13(18)2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34572790

ABSTRACT

Fifteen selenocompounds, comprising of eight ketone-containing selenoesters (K1-K8, also known as oxoselenoesters) and seven cyano-containing selenoesters (N1-N7, known also as cyanoselenoesters), have been designed, synthesized, and evaluated as novel anticancer agents. These compounds are derivatives of previously reported active selenoesters and were prepared following a three-step one-pot synthetic route. The following evaluations were performed in their biological assessment: cytotoxicity determination, selectivity towards cancer cells in respect to non-cancer cells, checkerboard combination assay, ABCB1 inhibition and inhibition of ABCB1 ATPase activity, apoptosis induction, and wound healing assay. As key results, all the compounds showed cytotoxicity against cancer cells at low micromolar concentrations, with cyanoselenoesters being strongly selective. All of the oxoselenoesters, except K4, were potent ABCB1 inhibitors, and two of them, namely K5 and K6, enhanced the activity of doxorubicin in a synergistic manner. The majority of these ketone derivatives modulated the ATPase activity, showed wound healing activity, and induced apoptosis, with K3 being the most potent, with a potency close to that of the reference compound. To summarize, these novel derivatives have promising multi-target activity, and are worthy to be studied more in-depth in future works to gain a greater understanding of their potential applications against cancer.

20.
Int J Mol Sci ; 22(15)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34360657

ABSTRACT

Although some metallic nanoparticles (NPs) are commonly used in the food processing plants as nanomaterials for food packaging, or as coatings on the food handling equipment, little is known about antimicrobial properties of palladium (PdNPs) and platinum (PtNPs) nanoparticles and their potential use in the food industry. In this study, common food-borne pathogens Salmonella enterica Infantis, Escherichia coli, Listeria monocytogenes and Staphylococcus aureus were tested. Both NPs reduced viable cells with the log10 CFU reduction of 0.3-2.4 (PdNPs) and 0.8-2.0 (PtNPs), average inhibitory rates of 55.2-99% for PdNPs and of 83.8-99% for PtNPs. However, both NPs seemed to be less effective for biofilm formation and its reduction. The most effective concentrations were evaluated to be 22.25-44.5 mg/L for PdNPs and 50.5-101 mg/L for PtNPs. Furthermore, the interactions of tested NPs with bacterial cell were visualized by transmission electron microscopy (TEM). TEM visualization confirmed that NPs entered bacteria and caused direct damage of the cell walls, which resulted in bacterial disruption. The in vitro cytotoxicity of individual NPs was determined in primary human renal tubular epithelial cells (HRTECs), human keratinocytes (HaCat), human dermal fibroblasts (HDFs), human epithelial kidney cells (HEK 293), and primary human coronary artery endothelial cells (HCAECs). Due to their antimicrobial properties on bacterial cells and no acute cytotoxicity, both types of NPs could potentially fight food-borne pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Foodborne Diseases/prevention & control , Metal Nanoparticles/administration & dosage , Palladium/chemistry , Platinum/chemistry , Anti-Bacterial Agents/chemistry , Bacteria/classification , Bacteria/growth & development , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/drug effects , Food Microbiology , Humans , Kidney/cytology , Kidney/drug effects , Metal Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...