Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36772202

ABSTRACT

Due to the high occupational pressure suffered by intensive care units (ICUs), a correct estimation of the patients' length of stay (LoS) in the ICU is of great interest to predict possible situations of collapse, to help healthcare personnel to select appropriate treatment options and to predict patients' conditions. There has been a high amount of data collected by biomedical sensors during the continuous monitoring process of patients in the ICU, so the use of artificial intelligence techniques in automatic LoS estimation would improve patients' care and facilitate the work of healthcare personnel. In this work, a novel methodology to estimate the LoS using data of the first 24 h in the ICU is presented. To achieve this, XGBoost, one of the most popular and efficient state-of-the-art algorithms, is used as an estimator model, and its performance is optimized both from computational and precision viewpoints using Bayesian techniques. For this optimization, a novel two-step approach is presented. The methodology was carefully designed to execute codes on a high-performance computing system based on graphics processing units, which considerably reduces the execution time. The algorithm scalability is analyzed. With the proposed methodology, the best set of XGBoost hyperparameters are identified, estimating LoS with a MAE of 2.529 days, improving the results reported in the current state of the art and probing the validity and utility of the proposed approach.


Subject(s)
Artificial Intelligence , Intensive Care Units , Humans , Bayes Theorem , Algorithms , Computing Methodologies
2.
Article in English | MEDLINE | ID: mdl-36834150

ABSTRACT

It is of great interest to develop and introduce new techniques to automatically and efficiently analyze the enormous amount of data generated in today's hospitals, using state-of-the-art artificial intelligence methods. Patients readmitted to the ICU in the same hospital stay have a higher risk of mortality, morbidity, longer length of stay, and increased cost. The methodology proposed to predict ICU readmission could improve the patients' care. The objective of this work is to explore and evaluate the potential improvement of existing models for predicting early ICU patient readmission by using optimized artificial intelligence algorithms and explainability techniques. In this work, XGBoost is used as a predictor model, combined with Bayesian techniques to optimize it. The results obtained predicted early ICU readmission (AUROC of 0.92 ± 0.03) improves state-of-the-art consulted works (whose AUROC oscillate between 0.66 and 0.78). Moreover, we explain the internal functioning of the model by using Shapley Additive Explanation-based techniques, allowing us to understand the model internal performance and to obtain useful information, as patient-specific information, the thresholds from which a feature begins to be critical for a certain group of patients, and the feature importance ranking.


Subject(s)
Artificial Intelligence , Patient Readmission , Humans , Bayes Theorem , Machine Learning , Intensive Care Units
3.
Sensors (Basel) ; 21(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34770432

ABSTRACT

Due to the continuous monitoring process of critical patients, Intensive Care Units (ICU) generate large amounts of data, which are difficult for healthcare personnel to analyze manually, especially in overloaded situations such as those present during the COVID-19 pandemic. Therefore, the automatic analysis of these data has many practical applications in patient monitoring, including the optimization of alarm systems for alerting healthcare personnel. In this paper, explainable machine learning techniques are used for this purpose, with a methodology based on age-stratification, boosting classifiers, and Shapley Additive Explanations (SHAP) proposed. The methodology is evaluated using MIMIC-III, an ICU patient research database. The results show that the proposed model can predict mortality within the ICU with AUROC values of 0.961, 0.936, 0.898, and 0.883 for age groups 18-45, 45-65, 65-85 and 85+, respectively. By using SHAP, the features with the highest impact in predicting mortality for different age groups and the threshold from which the value of a clinical feature has a negative impact on the patient's health can be identified. This allows ICU alarms to be improved by identifying the most important variables to be sensed and the threshold values at which the health personnel must be warned.


Subject(s)
COVID-19 , Pandemics , Humans , Intensive Care Units , Machine Learning , SARS-CoV-2
4.
Food Sci Nutr ; 6(1): 27-35, 2018 01.
Article in English | MEDLINE | ID: mdl-29387358

ABSTRACT

The individual preferences of 100 consumers between 20 and 30 years old for the color of 16 milk-fruit juice beverages (MFJB) were investigated by preference mapping technique. Consumers were asked to evaluate, just by looking at the samples, how much they liked them (from "Extremely dislike" to "Extremely like"). The color of the samples was analyzed by two different instrumental techniques. Results obtained from the instrumental color measurement showed the wide diversity in hues of the beverages available in the market, and correlations between techniques proved that both of them were appropriate to analyze color. Results showed that participants preferred samples with orangish appearance instead of those with a whiter look. Anyway, punctuations given by the consumers suggest that generally, color of these products is not highly evaluated by consumers, as the best mean punctuation was 6.6.

SELECTION OF CITATIONS
SEARCH DETAIL
...