Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Res Physiol ; 5: 171-178, 2022.
Article in English | MEDLINE | ID: mdl-35356048

ABSTRACT

Background: The cGMP-dependent protein kinase G (PKG) phosphorylates the cardiac ryanodine receptor (RyR2) in vitro. We aimed to determine whether modulation of endogenous PKG alters RyR2-mediated spontaneous Ca2+ release and whether this effect is linked to a change in RyR2 phosphorylation. Methods: & Results: Human embryonic kidney (HEK293) cells with inducible RyR2 expression were treated with the cGMP analogue 8-Br-cGMP (100 µM) to activate endogenous PKG. In cells transfected with luminal Ca2+ sensor, D1ER, PKG activation significantly reduced the threshold for RyR2-mediated spontaneous Ca2+ release (93.9 ± 0.4% of store size with vehicle vs. 91.7 ± 0.8% with 8-Br-cGMP, P = 0.04). Mutation of the proposed PKG phosphorylation sites, S2808 and S2030, either individually or as a combination, prevented the decrease in Ca2+ release threshold induced by endogenous PKG activation. Interestingly, despite a functional dependence on expression of RyR2 phosphorylation sites, 8-Br-cGMP activation of PKG did not promote a detectable change in S2808 phosphorylation (P = 0.9). Paradoxically, pharmacological inhibition of PKG with KT 5823 (1 µM) also reduced the threshold for spontaneous Ca2+ release through RyR2 without affecting S2808 phosphorylation. Silencing RNA knockdown of endogenous PKG expression also had no quantifiable effect on RyR2 S2808 phosphorylation (P = 0.9). However, unlike PKG inhibition with KT 5823, PKG knockdown did not alter spontaneous Ca2+ release propensity or luminal Ca2+ handling. Conclusion: In an intact cell model, activation of endogenous PKG reduces the threshold for RyR2-mediated spontaneous Ca2+ release in a manner dependent on the RyR2 phosphorylation sites S2808 and S2030. This study clarifies the regulation of RyR2 Ca2+ release by endogenous PKG and functionally implicates the role of RyR2 phosphorylation.

2.
J Mol Cell Cardiol ; 112: 16-26, 2017 11.
Article in English | MEDLINE | ID: mdl-28867536

ABSTRACT

Cardiac adaptation to endurance training includes improved contractility by a non-yet clarified mechanism. Since IGF-1 is the main mediator of the physiological response to exercise, we explored its effect on cardiac contractility and the putative involvement of nitric oxide (NO) and CaMKII in control and swim-trained mice. IGF-1 increased cardiomyocyte shortening (128.1±4.6% vs. basal; p˂0.05) and accelerated relaxation (time to 50% relengthening: 49.2±2.0% vs. basal; p˂0.05), effects abrogated by inhibition of: AKT with MK-2206, NO production with the NO synthase (NOS) inhibitor L-NAME and the specific NOS1 inhibitor nitroguanidine (NG), and CaMKII with KN-93. In agreement, an increase in NO in response to IGF-1 (133.8±2.2%) was detected and prevented by both L-NAME and NG but not KN-93, suggesting that CaMKII activation was downstream NO. In addition, we determined CaMKII activity (P-CaMKII) and phosphorylation of its target, Thr17-PLN. IGF-1, by a NO-dependent mechanism, significantly increased both (227.2±29.4% and 145.3±5.4%, respectively) while no changes in the CaMKII phosphorylation site of ryanodine receptor were evident. The improvement in contractility induced by IGF-1 was associated with increased Ca2+ transient amplitude, rate of decay and SR content. Interestingly, this response was absent in cardiomyocytes from transgenic mice that express a CaMKII inhibitory peptide (AC3-I strain). Moreover, AC3-I mice subjected to swim training did develop physiological cardiac hypertrophy but not the contractile adaptation. Therefore, we conclude that NO-dependent CaMKII activation plays a critical role in the improvement in contractility induced by IGF-1 and exercise training. Interestingly, this pathway would not contribute to the adaptive hypertrophy.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Insulin-Like Growth Factor I/pharmacology , Myocardial Contraction , Nitric Oxide/metabolism , Swimming/physiology , Animals , Calcium Signaling/drug effects , Cardiomegaly/enzymology , Cardiomegaly/pathology , Male , Mice, Inbred C57BL , Mice, Transgenic , Models, Animal , Models, Biological , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Physical Conditioning, Animal , Proto-Oncogene Proteins c-akt/metabolism , Sarcoplasmic Reticulum/metabolism
3.
Pflugers Arch ; 469(12): 1663-1673, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28836001

ABSTRACT

The force-frequency relationship (FFR) is an important intrinsic regulatory mechanism of cardiac contractility. However, a decrease (negative FFR) or no effect (flat FFR) on contractile force in response to an elevation of heart rate is present in the normal rat or in human heart failure. Reactive oxygen species (ROS) can act as intracellular signaling molecules activating diverse kinases as calcium-calmodulin-dependent protein kinase II (CaMKII) and p-38 MAP kinase (p-38K). Our aim was to elucidate the intracellular molecules implicated in the FFR of isolated rat ventricular myocytes. The myocytes were field-stimulated via two-platinum electrodes. Sarcomere length was recorded with a video camera. Ca2+ transients and intracellular pHi were recorded by epifluorescence. Increasing frequency from 0.5 to 3 Hz decreased cell shortening without changes in pHi. This negative FFR was changed to positive FFR when the myocytes were pre-incubated with the ROS scavenger MPG, the NADPH oxidase blocker apocynin, or by inhibiting mitochondrial ROS production with 5-HD. Similar results were obtained when the cells were pre-incubated with the CaMKII blocker, KN-93, or the p-38K inhibitor, SB-202190. Consistently, the levels of phosphorylation of p-38K and the oxidation of CaMKII were significantly higher at 2 Hz than at 0.5 Hz. Despite the presence of positive inotropic effect during stimulation frequency enhancement, Ca2+ transient amplitudes were reduced in MPG- and SB-202190-treated myocytes. In conclusion, our results indicate that the activation of the intracellular pathway involving ROS-CaMKII-p-38K contributes to the negative FFR of rat cardiomyocytes, likely by desensitizing the response of contractile myofilaments to Ca2+.


Subject(s)
Myocardial Contraction/physiology , Myocytes, Cardiac/metabolism , Myofibrils/metabolism , Reactive Oxygen Species/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Heart Ventricles/metabolism , Male , Rats , Rats, Wistar
4.
J Mol Cell Cardiol ; 89(Pt B): 260-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26497404

ABSTRACT

Some cardiac non-genomic effects of aldosterone (Ald) are reported to be mediated through activation of the classic mineralocorticoid receptor (MR). However, in the last years, it was proposed that activation of the novel G protein-coupled receptor GPR30 mediates certain non-genomic effects of Ald. The aim of this study was to elucidate if the sodium/bicarbonate cotransporter (NBC) is stimulated by Ald and if the activation of GPR30 mediates this effect. NBC activity was evaluated in rat cardiomyocytes perfused with HCO3(-)/CO2 solution in the continuous presence of HOE642 (sodium/hydrogen exchanger blocker) during recovery from acidosis using intracellular fluorescence measurements. Ald enhanced NBC activity (% of ΔJHCO3(-); control: 100±5.82%, n=7 vs Ald: 151.88±11.02%, n=5; P<0.05), which was prevented by G15 (GPR30 blocker, 90.53±7.81%, n=7). Further evidence for the involvement of GPR30 was provided by G1 (GPR30 agonist), which stimulated NBC (185.13±18.28%, n=6; P<0.05) and this effect was abrogated by G15 (124.19±10.96%, n=5). Ald- and G1-induced NBC stimulation was abolished by the reactive oxygen species (ROS) scavenger MPG and by the NADPH oxidase inhibitor apocynin. In addition, G15 prevented Ald- and G1-induced ROS production. Pre-incubation of myocytes with wortmannin (PI3K-AKT pathway blocker) prevented Ald- or G1-induced NBC stimulation. In summary, Ald stimulates NBC by GPR30 activation, ROS production and AKT stimulation.


Subject(s)
Aldosterone/pharmacology , Myocardium/metabolism , Receptors, G-Protein-Coupled/metabolism , Sodium-Bicarbonate Symporters/metabolism , Animals , Epidermal Growth Factor/pharmacology , ErbB Receptors/metabolism , Hydrogen-Ion Concentration , Intracellular Space/metabolism , Male , Models, Biological , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats, Wistar , Reactive Oxygen Species/metabolism , Receptors, Mineralocorticoid/metabolism , Transcriptional Activation/drug effects
5.
J Exp Biol ; 209(Pt 5): 916-26, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16481580

ABSTRACT

Hypercapnic acidosis produces a negative inotropic effect on myocardial contractility followed by a partial recovery that occurs in spite of the persistent extracellular acidosis. The underlying mechanisms of this recovery are far from understood, especially in those species in which excitation-contraction coupling differs from that of the mammalian heart. The main goal of the present experiments was to obtain a better understanding of these mechanisms in the toad heart. Hypercapnic acidosis, induced by switching from a bicarbonate-buffered solution equilibrated with 5% CO2 to the same solution equilibrated with 12% CO2, evoked a decrease in contractility followed by a recovery that reached values higher than controls after 30 min of continued acidosis. This contractile pattern was associated with an initial decrease in intracellular pH (pHi) that recovered to control values in spite of the persistent extracellular acidosis. Blockade of the Na+/H+ exchanger (NHE) with cariporide (5 micromol l-1) produced a complete inhibition of pHi restitution, without affecting the mechanical recovery. Hypercapnic acidosis also produced a gradual increase of diastolic and peak Ca2+i transient values, which occurred immediately after the acidosis was settled and persisted during the mechanical recovery phase. Inhibition of Ca2+ influx through the reverse mode of the Na+/Ca2+ exchanger (NCX) by KB-R (1 micromol l-1 for myocytes and 20 micromol l-1 for ventricular strips), or of L-type Ca2+ channels by nifedipine (0.5 micromol l-1), completely abolished the mechanical recovery. Acidosis also produced an increase in the action potential duration. This prolongation persisted throughout the acidosis period. Our results show that in toad ventricular myocardium, acidosis produces a decrease in contractility, due to a decrease in Ca2+ myofilament responsiveness, followed by a contractile recovery, which is independent of pHi recovery and relies on an increase in the influx of Ca2+. The results further indicate that both the reverse mode NCX and the L-type Ca2+ channels, appear to be involved in the increase in intracellular Ca2+ concentration that mediates the contractile recovery from acidosis.


Subject(s)
Acidosis/metabolism , Bufonidae/metabolism , Calcium/metabolism , Myocardial Contraction/physiology , Ventricular Function , Animals , Carbon Dioxide/metabolism , Hydrogen-Ion Concentration , Hypercapnia , Myocardium/cytology , Myocardium/metabolism , Sarcoplasmic Reticulum/metabolism , Sodium/metabolism
6.
Plant J ; 41(6): 831-44, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15743448

ABSTRACT

Vacuolar compartments associated with leaf senescence and the subcellular localization of the senescence-specific cysteine-protease SAG12 (senescence-associated gene 12) were studied using specific fluorescent markers, the expression of reporter genes, and the analysis of high-pressure frozen/freeze-substituted samples. Senescence-associated vacuoles (SAVs) with intense proteolytic activity develop in the peripheral cytoplasm of mesophyll and guard cells in Arabidopsis and soybean. The vacuolar identity of these compartments was confirmed by immunolabeling with specific antibody markers. SAVs and the central vacuole differ in their acidity and tonoplast composition: SAVs are more acidic than the central vacuole and, whereas the tonoplast of central vacuoles is highly enriched in gamma-TIP (tonoplast intrinsic protein), the tonoplast of SAVs lacks this aquaporin. The expression of a SAG12-GFP fusion protein in transgenic Arabidopsis plants shows that SAG12 localizes to SAVs. The analysis of Pro(SAG12):GUS transgenic plants indicates that SAG12 expression in senescing leaves is restricted to SAV-containing cells, for example, mesophyll and guard cells. A homozygous sag12 Arabidopsis mutant develops SAVs and does not show any visually detectable phenotypical alteration during senescence, indicating that SAG12 is not required either for SAV formation or for progression of visual symptoms of senescence. The presence of two types of vacuoles in senescing leaves could provide different lytic compartments for the dismantling of specific cellular components. The possible origin and functions of SAVs during leaf senescence are discussed.


Subject(s)
Arabidopsis/enzymology , Arabidopsis/ultrastructure , Glycine max/enzymology , Glycine max/ultrastructure , Vacuoles/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/physiology , Chloroplasts , Cysteine Endopeptidases/physiology , Hydrogen-Ion Concentration , Mutation , Plant Leaves/enzymology , Plant Leaves/ultrastructure , Plants, Genetically Modified , Glycine max/genetics , Time Factors , Vacuoles/chemistry
7.
Heart Lung Circ ; 13(4): 410-20, 2004 Dec.
Article in English | MEDLINE | ID: mdl-16352227

ABSTRACT

The frequency of pacing is a fundamental physiological modulator of myocardial function. When the pacing rate increases there is normally an increase in contractility (a positive force-frequency relationship). However in small rodents, fish and end-stage failing myocardium, the force-frequency response has been found to be flat or even negative. The positive staircase is understood to be related with the increase in the intracellular Ca(2+) transient, mainly due to an enhanced sarcoplasmic reticulum Ca(2+) content at higher stimulation frequencies, resulting from an increase in Ca(2+) influx per unit time and reduced Ca(2+) efflux between beats. However, additional mechanisms, such as increased activity of Ca(2+)/calmodulin-dependent protein kinase or enhanced myofilament responsiveness to Ca(2+) may also play a role. Although an increase in contraction frequency has been shown to be associated with an increase in intracellular Na(+), several studies have shown a temporal dissociation between the increase in Na(i)(+) and the increase in force evoked by changes in pacing frequency. The way in which the Na(+)/Ca(2+) exchanger contributes to contraction frequency inotropy is still not well understood. The aim of this review is to examine the contribution of the fundamental components of cardiac excitation-contraction coupling to frequency inotropy in healthy and failing hearts.

8.
J Physiol ; 550(Pt 3): 801-17, 2003 Aug 01.
Article in English | MEDLINE | ID: mdl-12938675

ABSTRACT

In most mammalian species, an increase in stimulation frequency (ISF) produces an increase in contractility (treppe phenomenon), which results from larger Ca2+ transients at higher frequencies, due to an increase in sarcoplasmic reticulum Ca2+ load and release. The present study attempts to elucidate the contribution of the Na(+)-Ca2+ exchanger (NCX) to this phenomenon. Isolated cat ventricular myocytes, loaded with [Ca2+]i- and [Na+]i-sensitive probes, were used to determine whether the contribution of the NCX to the positive inotropic effect of ISF is due to an increase in Ca2+ influx (reverse mode) and/or a decrease in Ca2+ efflux (forward mode) via the NCX, due to frequency-induced [Na+]i elevation, or whether it was due to the reduced time for the NCX to extrude Ca2+. The results showed that the positive intropic effect produced by ISF was temporally dissociated from the increase in [Na+]i and was not modified by KB-R7943 (1 or 5 microM), a specific blocker of the reverse mode of the NCX. Whereas the ISF from 10 to 30 beats min(-1) (bpm) did not affect the forward mode of the NCX (assessed by the time to half-relaxation of the caffeine-induced Ca2+ transient), the ISF to 50 bpm produced a significant reduction of the activity of the forward mode of the NCX, which occurred in association with an increase in [Na+]i (from 4.33+/-0.40 to 7.25+/-0.50 mM). However, both changes became significant well after the maximal positive inotropic effect had been reached. In contrast, the positive inotropic effect produced by ISF from 10 to 50 bpm was associated with an increase in diastolic [Ca2+]i, which occurred in spite of a significant increase in the relaxation rate and at a time at which no increases in [Na+]i were detected. The contribution of the NCX to stimulus frequency inotropy would therefore depend on a decrease in NCX-mediated Ca2+ efflux due to the reduced diastolic interval between beats and not on [Na+]i-dependent mechanisms.


Subject(s)
Heart Rate/physiology , Myocardial Contraction/physiology , Sodium-Calcium Exchanger/physiology , Thiourea/analogs & derivatives , Animals , Calcium/metabolism , Calcium/physiology , Calcium Signaling/drug effects , Calcium Signaling/physiology , Cardiotonic Agents/pharmacology , Cats , Cytosol/metabolism , Electric Stimulation , Fluorescent Dyes , Heart Rate/drug effects , In Vitro Techniques , Indoles , Myocardial Contraction/drug effects , Ouabain/pharmacology , Papillary Muscles/cytology , Papillary Muscles/drug effects , Papillary Muscles/physiology , Sodium/metabolism , Sodium-Calcium Exchanger/metabolism , Thiourea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...