Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 249: 116839, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32933683

ABSTRACT

The design of innovative pharmaceutical products, able to reach unexplored market niches, requires natural materials use with improved swelling and moisture properties. Herein, chitosan (CHT), a natural polymer, was combined with virgin coconut oil (VCO), a resource extracted from coconut kernels, to develop emulsion-based films for biomedical purposes. The film's properties were tuned by changing VCO concentrations, and the structural, morphological, and physical properties of the films were evaluated. The CHT/VCO-based film morphology showed the presence of VCO droplets at different sizes, both in the surface and inner part. Moreover, the capability to develop CHT/VCO-films as superabsorbent materials was shown. The film extracts cytotoxicity was assessed using human adipose stem cells, and metabolic activity was confirmed. The findings suggest that incorporating a small volume of VCO into the CHT system, superabsorbent materials with the potential to be applied in biomedical devices that require high swelling properties, can be developed.

2.
AMB Express ; 9(1): 78, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31139942

ABSTRACT

Iron deficiency is one of the main causes of chlorosis in plants, which leads to losses in field crops quality and yield. The use of synthetic chelates to prevent or correct iron-deficiency is not satisfactory mainly due to their poor biodegradability. The present work aimed to search suitable microorganisms to produce alternative, environment-friendly iron-chelating agents (siderophores). For this purpose, the performance of five bacteria (Azotobacter vinelandii, Bacillus megaterium, Bacillus subtilis, Pantoea allii and Rhizobium radiobacter) was evaluated, regarding siderophore production kinetics, level of siderophore production (determined by chrome azurol S, CAS method), type of siderophore produced (using Arnow and Csaky's tests) and iron-chelating capacity at pH 9.0. All bacteria were in stationary phase at 24 h, except A. vinelandii (at 72 h) and produced the maximum siderophore amount (80-140 µmol L-1) between 24 and 48 h, with the exception of A. vinelandii (at 72 h). The analysis of culture filtrates revealed the presence of catechol-type siderophores for B. subtilis and R. radiobacter and hydroxamate-type siderophores for B. megaterium and P. allii. In the case of A. vinelandii, both siderophore-types (catechol and hydroxamates) were detected. The highest iron-chelating capacity, at pH 9.0, was obtained by B. megaterium followed by B. subtilis and A. vinelandii. Therefore, these three bacteria strains are the most promising bacteria for siderophore production and chlorosis correction under alkaline conditions.

3.
Food Chem ; 276: 719-725, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30409654

ABSTRACT

Taking advantage of the low oxidation potential of polyphenolic compounds, voltammetric techniques, such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV) are used rather indiscriminately. In this work, we report Total Polyphenols results (TPP) obtained by these two techniques from a set of nine samples of red and Tawny Port wine. The CV and DPV voltammograms display significant correlations with the physical-chemical parameters used to characterize red and Tawny Port wines, particularly with polyphenols. Although data obtained from CV and DPV for a single polyphenol are directly proportional, important deviations are found between voltammetric results from wines. Results from CV tend to be larger than those from DPV. This difference, that can reach 50% of the TPP value, was related to the presence of total sulphur dioxide. In view of the present study, the polyphenol quantification in wines should be performed by DPV to minimize the interference of SO2.


Subject(s)
Electrochemical Techniques/methods , Polyphenols/analysis , Wine/analysis , Food Analysis/methods , Oxidation-Reduction , Polyphenols/chemistry , Sulfur Dioxide/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...