Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Nano Mater ; 7(12): 14557-14565, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38962506

ABSTRACT

Composites of nanocarbons and transition metal oxides combine excellent mechanical properties and high electrical conductivity with high capacitive active sites. These composites are promising for applications such as electrochemical energy conversion and storage, catalysis, and sensing. Here, we show that Joule heating can be used as a rapid out-of-oven thermal processing technique to crystallize the inorganic metal oxide matrix within a carbon nanotube fabric (CNTf) composite. We choose manganese oxide and vanadium oxide as model metal oxides and show that the Joule heating process is rapid and enables accurate control over the temperature and phase transitions. Next, we use thermogravimetric analysis and Joule heating experiments in controlled atmospheres to show that metal oxides can actually catalyze thermal degradation and reduce the thermal stability of the CNTs, which could limit processing of many oxides. We solve this by using a reducing hydrogen atmosphere to successfully extend the Joule processing window and thermal stability of the CNTf/metal oxide composite to ∼1000 °C.

2.
Phys Chem Chem Phys ; 24(2): 1081-1090, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34927649

ABSTRACT

A substantial influence of a magnetic field on the third-order nonlinear optical properties exhibited by aggregated networks of aligned carbon nanotubes (CNT) is reported by systematic measurements. A two-wave mixing was employed to explore and modulate the refractive index in the nanostructures in the nanosecond and picosecond regime. The presence of a magnetic field was able to modify the optical transmittance in the sample and the potentiality to generate structured light was proposed. Numerical simulations were conducted to analyze the magnetic field phenomena and the oscillations of the electric field in the studied sample. We discussed theoretical concepts, experimental methods, and computational tools employed to evaluate the third-order nonlinear optical properties of CNT in film form. Immediate applications of the system to modulate structured light can be contemplated.

3.
Nanoscale ; 12(32): 16980-16986, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32780058

ABSTRACT

In this work, we report the fabrication of continuous transparent and flexible supercapacitors by depositing a CNT network onto a polymer electrolyte membrane directly from an aerogel of ultra-long CNTs produced floating in the gas phase. The supercapacitors show a combination of a power density of 1370 kW kg-1 at high transmittance (ca. 70%), and high electrochemical stability during extended cycling (>94% capacitance retention over 20 000 cycles) and against repeated 180° flexural deformation. They represent a significant enhancement of 1-3 orders of magnitude compared to prior state-of-the-art transparent supercapacitors based on graphene, CNTs, and rGO. These features mainly arise from the exceptionally long length of CNTs, which makes the material behave as a bulk conductor instead of an aspect ratio-limited percolating network, even for electrodes with >90% transparency. The electrical and capacitive figures-of-merit for the transparent conductor are FoMe = 2.7, and FoMc = 0.46 F S-1 cm-2 respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...