Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 99(4-1): 042107, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31108646

ABSTRACT

This work presents a thermodynamic analysis of the ballistic heat equation from two viewpoints: classical irreversible thermodynamics (CIT) and extended irreversible thermodynamics (EIT). A formula for calculating the entropy within the framework of EIT for the ballistic heat equation is derived. The entropy is calculated for a sinusoidal initial temperature perturbation by using both approaches. The results obtained from CIT show that the entropy is a non-monotonic function and that the entropy production can be negative. The results obtained for EIT show that the entropy is a monotonic function and that the entropy production is nonnegative. A comparison between the entropy behaviors predicted for the ballistic, for the ordinary Fourier-based, and for the hyperbolic heat equation is made. A crucial difference of the asymptotic behavior of the entropy for the ballistic heat equation is shown. It is argued that mathematical time reversibility of the partial differential ballistic heat equation is not consistent with its physical irreversibility. The processes described by the ballistic heat equation are irreversible because of the entropy increase.

2.
Article in English | MEDLINE | ID: mdl-30906737

ABSTRACT

The success of medical therapy depends on the correct amount and the appropriate delivery of the required drugs for treatment. By using biodegradable polymers a drug delivery over a time span of weeks or even months is made possible. This opens up a variety of strategies for better medication. The drug is embedded in a biodegradable polymer (the "carrier") and injected in a particular position of the human body. As a consequence of the interplay between the diffusion process and the degrading polymer the drug is released in a controlled manner. In this work we study the controlled release of medication experimentally by measuring the delivered amount of drug within a cylindrical shell over a long time interval into the body fluid. Moreover, a simple continuum model of the Fickean type is initially proposed and solved in closed-form. It is used for simulating some of the observed release processes for this type of carrier and takes the geometry of the drug container explicitly into account. By comparing the measurement data and the model predictions diffusion coefficients are obtained. It turns out that within this simple model the coefficients change over time. This contradicts the idea that diffusion coefficients are constants independent of the considered geometry. The model is therefore extended by taking an additional absorption term into account leading to a concentration dependent diffusion coefficient. This could now be used for further predictions of drug release in carriers of different shape. For a better understanding of the complex diffusion and degradation phenomena the underlying physics is discussed in detail and even more sophisticated models involving different degradation and mass transport phenomena are proposed for future work and study.

SELECTION OF CITATIONS
SEARCH DETAIL
...