Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 33(13): e17423, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38825968

ABSTRACT

If similar evolutionary forces maintain intra- and interspecific diversity, patterns of diversity at both levels of biological organization can be expected to covary across space. Although this prediction of a positive species-genetic diversity correlation (SGDC) has been tested for several taxa in natural landscapes, no study has yet evaluated the influence of the community delineation on these SGDCs. In this study, we focused on tropical fishes of the Indo-Pacific Ocean, using range-wide single nucleotide polymorphism data for a deep-sea fish (Etelis coruscans) and species presence data of 4878 Teleostei species. We investigated whether a diversity continuum occurred, for different community delineations (subfamily, family, order and class) and spatial extents, and which processes explained these diversity patterns. We found no association between genetic diversity and species richness (α-SGDC), regardless of the community and spatial extent. In contrast, we evidenced a positive relationship between genetic and species dissimilarities (ß-SGDC) when the community was defined at the subfamily or family level of the species of interest, and when the Western Indian Ocean was excluded. This relationship was related to the imprint of dispersal processes across levels of biological organization in Lutjanidae. However, this positive ß-SGDC was lost when considering higher taxonomic communities and at the scale of the entire Indo-Pacific, suggesting different responses of populations and communities to evolutionary processes at these scales. This study provides evidence that the taxonomic scale at which communities are defined and the spatial extent are pivotal to better understand the processes shaping diversity across levels of biological organization.


Subject(s)
Coral Reefs , Fishes , Genetic Variation , Polymorphism, Single Nucleotide , Animals , Fishes/genetics , Fishes/classification , Pacific Ocean , Polymorphism, Single Nucleotide/genetics , Indian Ocean , Biodiversity , Genetics, Population
2.
Mol Ecol ; : e17262, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38193599

ABSTRACT

The sex chromosomes have been hypothesized to play a key role in driving adaptation and speciation across many taxa. The reason for this is thought to be the hemizygosity of the heteromorphic part of sex chromosomes in the heterogametic sex, which exposes recessive mutations to natural and sexual selection. The exposure of recessive beneficial mutations increases their rate of fixation on the sex chromosomes, which results in a faster rate of evolution. In addition, genetic incompatibilities between sex-linked loci are exposed faster in the genomic background of hybrids of divergent lineages, which makes sex chromosomes contribute disproportionately to reproductive isolation. However, in birds, which show a Z/W sex determination system, the role of adaptation versus genetic drift as the driving force of the faster differentiation of the Z chromosome (fast-Z effect) and the disproportionate role of the Z chromosome in reproductive isolation (large-Z effect) are still debated. Here, we address this debate in the bird genus Ficedula flycatchers based on population-level whole-genome sequencing data of six species. Our analysis provides evidence for both faster lineage sorting and reduced gene flow on the Z chromosome than the autosomes. However, these patterns appear to be driven primarily by the increased role of genetic drift on the Z chromosome, rather than an increased rate of adaptive evolution. Genomic scans of selective sweeps and fixed differences in fact suggest a reduced action of positive selection on the Z chromosome.

3.
Proc Biol Sci ; 291(2015): 20232382, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38228173

ABSTRACT

Recombination is a central evolutionary process that reshuffles combinations of alleles along chromosomes, and consequently is expected to influence the efficacy of direct selection via Hill-Robertson interference. Additionally, the indirect effects of selection on neutral genetic diversity are expected to show a negative relationship with recombination rate, as background selection and genetic hitchhiking are stronger when recombination rate is low. However, owing to the limited availability of recombination rate estimates across divergent species, the impact of evolutionary changes in recombination rate on genomic signatures of selection remains largely unexplored. To address this question, we estimate recombination rate in two Ficedula flycatcher species, the taiga flycatcher (Ficedula albicilla) and collared flycatcher (Ficedula albicollis). We show that recombination rate is strongly correlated with signatures of indirect selection, and that evolutionary changes in recombination rate between species have observable impacts on this relationship. Conversely, signatures of direct selection on coding sequences show little to no relationship with recombination rate, even when restricted to genes where recombination rate is conserved between species. Thus, using measures of indirect and direct selection that bridge micro- and macro-evolutionary timescales, we demonstrate that the role of recombination rate and its dynamics varies for different signatures of selection.


Subject(s)
Passeriformes , Songbirds , Animals , Songbirds/genetics , Selection, Genetic , Genome , Passeriformes/genetics , Recombination, Genetic
4.
J Evol Biol ; 35(4): 509-519, 2022 04.
Article in English | MEDLINE | ID: mdl-34091960

ABSTRACT

Hybridization is an evolutionary process with wide-ranging potential outcomes, from providing populations with important genetic variation for adaptation to being a substantial fitness cost leading to extinction. Here, we focussed on putative hybridization between two morphologically distinct species of New Zealand grasshopper. We collected Phaulacridium marginale and Phaulacridium otagoense specimens from a region where mitochondrial introgression had been detected and where their habitat has been modified by introduced mammals eating the natural vegetation and by the colonization of many non-native plant species. In contrast to observations in the 1970s, our sampling of wild pairs of grasshoppers in copula provided no evidence of assortative mating with respect to species. Geometric morphometrics on pronotum shape of individuals from areas of sympatry detected phenotypically intermediate specimens (putative hybrids), and the distribution of phenotypes in most areas of sympatry was found to be unimodal. These results suggest that hybridization associated with anthropogenic habitat changes has led to these closely related species forming a hybrid swarm, with random mating. Without evidence of hybrid disadvantage, we suggest a novel hybrid lineage might eventually result from the merging of these two species.


Subject(s)
Grasshoppers , Animals , Grasshoppers/genetics , Hybridization, Genetic , Mammals , Phenotype , Reproduction , Sympatry
5.
Elife ; 92020 02 12.
Article in English | MEDLINE | ID: mdl-32048989

ABSTRACT

Do developmental systems preferentially produce certain types of variation that orient phenotypic evolution along preferred directions? At different scales, from the intra-population to the interspecific, the murine first upper molar shows repeated anterior elongation. Using a novel quantitative approach to compare the development of two mouse strains with short or long molars, we identified temporal, spatial and functional differences in tooth signaling center activity, that arise from differential tuning of the activation-inhibition mechanisms underlying tooth patterning. By tracing their fate, we could explain why only the upper first molar reacts via elongation of its anterior part. Despite a lack of genetic variation, individuals of the elongated strain varied in tooth length and the temporal dynamics of their signaling centers, highlighting the intrinsic instability of the upper molar developmental system. Collectively, these results reveal the variational properties of murine molar development that drive morphological evolution along a line of least resistance.


Over time species develop random mutations in their genetic sequence that causes their form to change. If this new form increases the survival of a species it will become favored through natural selection and is more likely to get passed on to future generations. But, the evolution of these new traits also depends on what happens during development. Developmental mechanisms control how an embryo progresses from a single cell to an adult organism made of many cells. Mutations that alter these processes can influence the physical outcome of development, and cause a new trait to form. This means that if many different mutations alter development in a similar way, this can lead to the same physical change, making it 'easy' for a new trait to repeatedly occur. Most of the research has focused on finding the mutations that underlie repeated evolution, but rarely on identifying the role of the underlying developmental mechanisms. To bridge this gap, Hayden et al. investigated how changes during development influence the shape and size of molar teeth in mice. In some wild species of mice, the front part of the first upper molar is longer than in other species. This elongation, which is repeatedly found in mice from different islands, likely came from developmental mechanisms. Tooth development in mice has been well-studied in the laboratory, and Hayden et al. started by identifying two strains of laboratory mice that mimic the teeth seen in their wild cousins, one with elongated upper first molars and another with short ones. Comparing how these two strains of mice developed their elongated or short teeth revealed key differences in the embryonic structures that form the upper molar and cause it to elongate. Further work showed that variations in these embryonic structures can even cause mice that are genetically identical to have longer or shorter upper first molars. These findings show how early differences during development can lead to small variations in form between adult species of mice. This study highlights how studying developmental differences as well as genetic sequences can further our understanding of how different species evolved.


Subject(s)
Biological Variation, Population/physiology , Molar/anatomy & histology , Molar/growth & development , Tooth Eruption/physiology , Animals , Biological Evolution , Embryo, Mammalian , Female , Male , Mice , Phenotype , Pregnancy , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...