Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oxid Med Cell Longev ; 2019: 5425021, 2019.
Article in English | MEDLINE | ID: mdl-31885802

ABSTRACT

The increase in antioxidant responses promoted by regular physical activity is strongly associated with the attenuation of chronic oxidative stress and physiological mechanisms related to exercise adaptation. The aim of this work was to evaluate and compare how different exercise protocols (HIIE: high-intensity interval exercise, CE: continuous exercise, and RE: resistance exercise) may alter salivary and plasmatic antioxidants and salivary markers of exercise intensity and nitric oxide. Thirteen healthy, trained male subjects were submitted to the three exercise protocols. Blood and saliva samples were collected at the points preexercise, postexercise, and 3 hours postexercise. Antioxidants (total antioxidant capacity, superoxide dismutase and catalase activities, and levels of reduced glutathione and uric acid), markers of exercise intensity (salivary total protein and amylase activity), and salivary nitric oxide were evaluated. As a result, all exercise protocols increased the markers of exercise intensity and nitric oxide. Antioxidant response was increased after exercise, and it was found that a single HIIE session exerts a similar pattern of antioxidant response compared to CE, in plasma and saliva samples, while RE presented minor alterations. We suggest that HIIE may lead to alterations in antioxidants and consequently to the physiological processes related to redox, similar to the CE, with the advantage of being performed in a shorter time. In addition, the antioxidant profile of saliva samples showed to be very similar to that of plasma, suggesting that saliva may be an alternative and noninvasive tool in sports medicine for the study of antioxidants in different physical exercise protocols.


Subject(s)
Antioxidants/metabolism , Blood Proteins/metabolism , Exercise/physiology , Saliva/metabolism , Adult , Biomarkers/metabolism , Catalase/metabolism , Glutathione/metabolism , Humans , Male , Oxidation-Reduction , Oxidative Stress , Superoxide Dismutase/metabolism , Uric Acid/metabolism , Young Adult
2.
Bioorg Chem ; 69: 167-182, 2016 12.
Article in English | MEDLINE | ID: mdl-27842248

ABSTRACT

Annona crassiflora Mart., whose fruit is popularly known as araticum, is a member of the Annonaceae family found in the Brazilian Cerrado. Although this plant has several medicinal uses, its bioactive molecules are not fully understood. A bioguided assay was performed to identify the main bioactive compounds of A. crassiflora fruit peel from the ethanol extract fractions with antioxidant capacity and α-amylase, α-glucosidase and glycation inhibitory activities. Ethyl acetate and n-butanol fractions showed, respectively, higher antioxidant capacity (DPPH IC50 1.5±0.1 and 0.8±0.1µgmL-1, ORAC 3355±164 and 2714±79µmoltroloxeq/g, and FRAP 888±16 and 921±9µmoltroloxeq/g) and inhibitory activities against α-amylase (IC50 4.5±0.8 and 1.7±0.3µgmL-1), α-glucosidase (IC50 554.5±158.6 and 787.8±140.6µgmL-1) and glycation (IC50 14.3±3.3 and 16.0±4.2µgmL-1), and lower cytotoxicity, compared to the other fractions and crude ethanol extract. The HPLC-ESI-MS/MS analysis identified various biomolecules known as potent antioxidants, such as chlorogenic acid, (epi)catechin, procyanidins, caffeoyl-hexosides, quercetin-glucosides and kaempferol. The fruit peel of A. crassiflora, a specie from Cerrado, the Brazilian Savanna, provided a source of antioxidant compounds with properties to block carbohydrate digestive enzymes and formation of glycation products. Thus, there is potential to use the by-products of araticum in order to identify and isolate phytochemicals for application in nutraceutical supplements, food additives and pharmaceuticals products.


Subject(s)
Annona/chemistry , Antioxidants/pharmacology , Enzyme Inhibitors/pharmacology , Fibroblasts/drug effects , Fruit/chemistry , alpha-Amylases/antagonists & inhibitors , alpha-Glucosidases/metabolism , Animals , Antioxidants/chemistry , Antioxidants/isolation & purification , Cell Survival/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Fibroblasts/metabolism , Mice , NIH 3T3 Cells , Structure-Activity Relationship , alpha-Amylases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...