Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38908504

ABSTRACT

CO2 exposure has been used to investigate the panicogenic response in patients with panic disorder. These patients are more sensitive to CO2, and more likely to experience the "false suffocation alarm" which triggers panic attacks. Imbalances in locus coeruleus noradrenergic (LC-NA) neurotransmission are responsible for psychiatric disorders, including panic disorder. These neurons are sensitive to changes in CO2/pH. Therefore, we investigated if LC-NA neurons are differentially activated after severe hypercapnia in mice. Further, we evaluated the participation of LC-NA neurons in ventilatory and panic-like escape responses induced by 20% CO2 in male and female wild type mice and two mouse models of altered LC-NA synthesis. Hypercapnia activates the LC-NA neurons, with males presenting a heightened level of activation. Mutant males lacking or with reduced LC-NA synthesis showed hypoventilation, while animals lacking LC noradrenaline present an increased metabolic rate compared to wild type in normocapnia. When exposed to CO2, males lacking LC noradrenaline showed a lower respiratory frequency compared to control animals. On the other hand, females lacking LC noradrenaline presented a higher tidal volume. Nevertheless, no change in ventilation was observed in either sex. CO2 evoked an active escape response. Mice lacking LC noradrenaline had a blunted jumping response and an increased freezing duration compared to the other groups. They also presented fewer racing episodes compared to wild type animals, but not different from mice with reduced LC noradrenaline. These findings suggest that LC-NA has an important role in ventilatory and panic-like escape responses elicited by CO2 exposure in mice.

2.
Pflugers Arch ; 474(11): 1185-1200, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35871663

ABSTRACT

Pregnancy is highly affected by anxiety disorders, which may be treated with benzodiazepines, especially diazepam (DZP), that can cross the placental barrier and interact with the fetal GABAergic system. We tested whether prenatal exposure to DZP promotes sex-specific postnatal changes in the respiratory control of rats. We evaluated ventilation ([Formula: see text]) and oxygen consumption ([Formula: see text] O2) in resting conditions and under hypercapnia (7% CO2) and hypoxia (10% O2) in newborn [postnatal day (P) 0-1 and P12-13)] and young (P21-22) rats from mothers treated with DZP during pregnancy. We also analyzed brainstem monoamines at the same ages. DZP exposure had minimal effects on room air-breathing variables in females, but caused hypoventilation (drop in [Formula: see text]/[Formula: see text] O2) in P12-13 males, lasting until P21-22. The hypercapnic ventilatory response was attenuated in P0-1 and P12-13 DZP-treated females mainly by a decrease in tidal volume (VT), whereas males had a reduction in respiratory frequency (fR) at P12-13. Minor changes were observed in hypoxia, but an attenuation in [Formula: see text] was seen in P12-13 males. In the female brainstem, DZP increased dopamine concentration and decreased 5-hydroxyindole-3-acetic acid (5-HIAA) and the 3,4-dihydroxyphenylacetic acid (DOPAC)/dopamine ratio at P0-1, and reduced DOPAC concentration at P12-13. In males, DZP decreased brainstem noradrenaline at P0-1. Our results demonstrate that prenatal DZP exposure reduces CO2 chemoreflex only in postnatal females and does not affect hypoxia-induced hyperventilation in both sexes. In addition, prenatal DZP alters brainstem monoamine concentrations throughout development differently in male and female rats.


Subject(s)
Carbon Dioxide , Diazepam , 3,4-Dihydroxyphenylacetic Acid , Acetates , Animals , Diazepam/pharmacology , Dopamine , Female , Hydroxyindoleacetic Acid , Hypercapnia , Hypoxia , Male , Norepinephrine , Placenta , Pregnancy , Rats
3.
J Psychopharmacol ; 35(12): 1523-1535, 2021 12.
Article in English | MEDLINE | ID: mdl-34872406

ABSTRACT

BACKGROUND: Acute hypoxia, which is panicogenic in humans, also evokes panic-like behavior in male rats. Panic disorder is more common in women and susceptibility increases during the premenstrual phase of the cycle. AIMS: We here investigated for the first time the impact of hypoxia on the expression of panic-like escape behavior by female rats and its relationship with the estrous cycle. We also evaluated functional activation of the midbrain panic circuitry in response to this panicogenic stimulus and whether short-term, low-dose fluoxetine treatment inhibits the hyper-responsiveness of females in late diestrus. METHODS: Male and female Sprague Dawley rats were exposed to 7% O2. Females in late diestrus were also tested after short-term treatment with fluoxetine (1.75 or 10 mg/kg, i.p.). Brains were harvested and processed for c-Fos and tryptophan hydroxylase immunoreactivity in the periaqueductal gray matter (PAG) and dorsal raphe nucleus (DR). RESULTS: Acute hypoxia evoked escape in both sexes. Overall, females were more responsive than males and this is clearer in late diestrus phase. In both sexes, hypoxia induced functional activation (c-Fos expression) in non-serotonergic cells in the lateral wings of the DR and dorsomedial PAG, which was greater in late diestrus than proestrus (lowest behavioral response to hypoxia). Increased responding in late diestrus (behavioral and cellular levels) was prevented by 1.75, but not 10 mg/kg fluoxetine. DISCUSSION: The response of female rats to acute hypoxia models panic behavior in women. Low-dose fluoxetine administered in the premenstrual phase deserves further attention for management of panic disorders in women.


Subject(s)
Behavior, Animal/drug effects , Diestrus/drug effects , Dorsal Raphe Nucleus/drug effects , Fluoxetine/pharmacology , Hypoxia/complications , Panic/drug effects , Periaqueductal Gray/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Sex Characteristics , Animals , Disease Models, Animal , Female , Male , Menstrual Cycle/drug effects , Panic Disorder/drug therapy , Rats , Rats, Sprague-Dawley , Selective Serotonin Reuptake Inhibitors/administration & dosage
4.
Behav Brain Res ; 404: 113159, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33571572

ABSTRACT

Antidepressant drugs are first-line treatment for panic disorder. Facilitation of 5-HT1A receptor-mediated neurotransmission in the dorsal periaqueductal gray (dPAG), a key panic-associated area, has been implicated in the panicolytic effect of the selective serotonin reuptake inhibitor fluoxetine. However, it is still unknown whether this mechanism accounts for the antipanic effect of other classes of antidepressants drugs (ADs) and whether the 5-HT interaction with 5-HT2C receptors in this midbrain area (which increases anxiety) is implicated in the anxiogenic effect caused by short-term treatment with ADs. The results showed that previous injection of the 5-HT1A receptor antagonist WAY-100635 in the dPAG blocked the panicolytic-like effect caused by chronic systemic administration of the tricyclic AD imipramine in male Wistar rats tested in the elevated T-maze. Neither chronic treatment with imipramine nor fluoxetine changed the expression of 5-HT1A receptors in the dPAG. Treatment with these ADs also failed to significantly change ERK1/2 (extracellular-signal regulated kinase) phosphorylation level in this midbrain area. Blockade of 5-HT2C receptors in the dPAG with the 5-HT2C receptor antagonist SB-242084 did not change the anxiogenic effect caused by a single acute injection of fluoxetine or imipramine in the Vogel conflict test. These results reinforce the view that the facilitation of 5-HT1A receptor-mediated neurotransmission in the dPAG is a common mechanism involved in the panicolytic effect caused by chronic administration of ADs. On the other hand, the anxiogenic effect observed after short-term treatment with these drugs does not depend on 5-HT2C receptors located in the dPAG.


Subject(s)
Antidepressive Agents/pharmacology , Anxiety/drug therapy , Panic/drug effects , Periaqueductal Gray/drug effects , Receptor, Serotonin, 5-HT1A/physiology , Receptor, Serotonin, 5-HT2C/physiology , Aminopyridines/pharmacology , Animals , Blotting, Western , Elevated Plus Maze Test , Fluoxetine/pharmacology , Imipramine/pharmacology , Indoles/pharmacology , Male , Open Field Test/drug effects , Periaqueductal Gray/metabolism , Periaqueductal Gray/physiology , Piperazines/pharmacology , Pyridines/pharmacology , Rats , Rats, Wistar , Receptor, Serotonin, 5-HT1A/drug effects , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT2C/drug effects , Receptor, Serotonin, 5-HT2C/metabolism , Serotonin 5-HT1 Receptor Antagonists/pharmacology
5.
Article in English | MEDLINE | ID: mdl-29111406

ABSTRACT

Exposure to elevated concentrations of CO2 or hypoxia has been widely used in psychiatric research as a panic provoking stimulus. However, the use of these respiratory challenges to model panic-like responses in experimental animals has been less straightforward. Little data is available, from behavioral and endocrine perspectives, to support the conclusion that a marked aversive situation, such as that experienced during panic attacks, was evoked in these animals. We here compared the behavioral responses of male CB57BL/6 mice during exposure to 20% CO2 or 7% O2 and its consequence on plasma levels of corticosterone. We also evaluated whether clinically-effective panicolytic drugs affect the behavioral responses expressed during CO2 exposure. The results showed that whereas hypoxia caused a marked reduction in locomotion, inhalation of CO2-enriched air evoked an active escape response, characterized by bouts of upward leaps directed to the border of the experimental cage, interpreted as escape attempts. Corticosterone levels were increased 30min after either of the respiratory challenges used, but it was higher in the hypoxia group. Chronic (21days), but not acute, treatment with fluoxetine or imipramine (5, 10 or 15mg/kg) or a single injection of alprazolam (0.025, 0.05 or 0.1mg/kg), but not of the anxiolytic diazepam (0.025, 0.05 or 0.1 and 1mg/kg) reduced the number of escape attempts, indicating a panicolytic-like effect. Altogether, the results suggest that whereas hypoxia increased anxiety, exposure to 20% CO2 evoked a panic-like state. The latter condition/test protocol seems to be a simple and validated model for studying in mice pathophysiological mechanisms and the screening of novel drugs for panic disorder.


Subject(s)
Carbon Dioxide/metabolism , Escape Reaction/physiology , Hypoxia/physiopathology , Panic/physiology , Alprazolam/pharmacology , Analysis of Variance , Animals , Carbon Dioxide/administration & dosage , Corticosterone/metabolism , Diazepam/pharmacology , Dose-Response Relationship, Drug , Escape Reaction/drug effects , Fluoxetine/pharmacology , Hypoxia/psychology , Imipramine/pharmacology , Male , Mice, Inbred C57BL , Motor Activity/drug effects , Motor Activity/physiology , Panic/drug effects , Psychotropic Drugs/pharmacology , Random Allocation
6.
Eur Neuropsychopharmacol ; 25(6): 913-22, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25840741

ABSTRACT

A wealth of evidence implicates the BDNF-TRKB system in the therapeutic effects of antidepressant drugs (ADs) on mood disorders. However, little is known about the involvement of this system in the panicolytic property also exerted by these compounds. In the present study we evaluated the participation of the BDNF-TRKB system of the dorsal periaqueductal gray matter (DPAG), a core structure involved in the pathophysiology of panic disorder, in AD-induced panicolytic-like effects in rats. The results showed that short- (3 days) or long-term (21 days) systemic treatment with the tricyclic ADs imipramine, clomipramine or desipramine increased BDNF levels in the DPAG. Only longterm treatment with the selective serotonin reuptake inhibitor fluoxetine was able to increase BDNF levels in this structure. After 21-day treatment, fluoxetine and the three tricyclic ADs used also increased BDNF concentration in the hippocampus, a key area implicated in their mood-related actions. Neither in the DPAG nor hippocampus did long-term treatment with the standard anxiolytics diazepam, clonazepam or buspirone affect BDNF levels. Imipramine, both after short and long-term administration, and fluoxetine under the latter regimen, raised the levels of phosphorylated TRKB in the DPAG. Short-term treatment with imipramine or BDNF microinjection inhibited escape expression in rats exposed to the elevated T maze, considered as a panicolytic-like effect. This anti-escape effect was attenuated by the intra-DPAG administration of the TRK receptor antagonist k252a. Altogether, our data suggests that facilitation of the BDNF-TRKB system in the DPAG is implicated in the panicolytic effect of ADs.


Subject(s)
Antidepressive Agents/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Periaqueductal Gray/drug effects , Periaqueductal Gray/metabolism , Receptor, trkB/metabolism , Signal Transduction/drug effects , Analysis of Variance , Animals , Anti-Anxiety Agents/pharmacology , Carbazoles/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Escape Reaction/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Indole Alkaloids/pharmacology , Injections, Intra-Articular , Male , Maze Learning/drug effects , Rats , Rats, Wistar , Reaction Time/drug effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...