Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Nat Biotechnol ; 41(10): 1457-1464, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36747096

ABSTRACT

DNA comprises molecular information stored in genetic and epigenetic bases, both of which are vital to our understanding of biology. Most DNA sequencing approaches address either genetics or epigenetics and thus capture incomplete information. Methods widely used to detect epigenetic DNA bases fail to capture common C-to-T mutations or distinguish 5-methylcytosine from 5-hydroxymethylcytosine. We present a single base-resolution sequencing methodology that sequences complete genetics and the two most common cytosine modifications in a single workflow. DNA is copied and bases are enzymatically converted. Coupled decoding of bases across the original and copy strand provides a phased digital readout. Methods are demonstrated on human genomic DNA and cell-free DNA from a blood sample of a patient with cancer. The approach is accurate, requires low DNA input and has a simple workflow and analysis pipeline. Simultaneous, phased reading of genetic and epigenetic bases provides a more complete picture of the information stored in genomes and has applications throughout biomedicine.

2.
Sci Rep ; 12(1): 16566, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36195648

ABSTRACT

Early detection of cancer will improve survival rates. The blood biomarker 5-hydroxymethylcytosine has been shown to discriminate cancer. In a large covariate-controlled study of over two thousand individual blood samples, we created, tested and explored the properties of a 5-hydroxymethylcytosine-based classifier to detect colorectal cancer (CRC). In an independent validation sample set, the classifier discriminated CRC samples from controls with an area under the receiver operating characteristic curve (AUC) of 90% (95% CI [87, 93]). Sensitivity was 55% at 95% specificity. Performance was similar for early stage 1 (AUC 89%; 95% CI [83, 94]) and late stage 4 CRC (AUC 94%; 95% CI [89, 98]). The classifier could detect CRC even when the proportion of tumor DNA in blood was undetectable by other methods. Expanding the classifier to include information about cell-free DNA fragment size and abundance across the genome led to gains in sensitivity (63% at 95% specificity), with similar overall performance (AUC 91%; 95% CI [89, 94]). We confirm that 5-hydroxymethylcytosine can be used to detect CRC, even in early-stage disease. Therefore, the inclusion of 5-hydroxymethylcytosine in multianalyte testing could improve sensitivity for the detection of early-stage cancer.


Subject(s)
Cell-Free Nucleic Acids , Colorectal Neoplasms , Biomarkers, Tumor/genetics , Cell-Free Nucleic Acids/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , DNA/genetics , Early Detection of Cancer/methods , Humans , Sensitivity and Specificity
4.
PLoS One ; 17(7): e0270710, 2022.
Article in English | MEDLINE | ID: mdl-35802654

ABSTRACT

Profiling the adaptive immune repertoire using next generation sequencing (NGS) has become common in human medicine, showing promise in characterizing clonal expansion of B cell clones through analysis of B cell receptors (BCRs) in patients with lymphoid malignancies. In contrast, most work evaluating BCR repertoires in dogs has employed traditional PCR-based approaches analyzing the IGH locus only. The objectives of this study were to: (1) describe a novel NGS protocol to evaluate canine BCRs; (2) develop a bioinformatics pipeline for processing canine BCR sequencing data; and (3) apply these methods to derive insights into BCR repertoires of healthy dogs and dogs undergoing treatment for B-cell lymphoma. RNA from peripheral blood mononuclear cells of healthy dogs (n = 25) and dogs newly diagnosed with intermediate-to-large B-cell lymphoma (n = 18) with intent to pursue chemotherapy was isolated, converted into cDNA and sequenced by NGS. The BCR repertoires were identified and quantified using a novel analysis pipeline. The IGK repertoires of the healthy dogs were far less diverse compared to IGL which, as with IGH, was highly diverse. Strong biases at key positions within the CDR3 sequence were identified within the healthy dog BCR repertoire. For a subset of the dogs with B-cell lymphoma, clonal expansion of specific IGH sequences pre-treatment and reduction post-treatment was observed. The degree of expansion and reduction correlated with the clinical outcome in this subset. Future studies employing these techniques may improve disease monitoring, provide earlier recognition of disease progression, and ultimately lead to more targeted therapeutics.


Subject(s)
Computational Biology , Lymphoma, B-Cell , Animals , Dogs , High-Throughput Nucleotide Sequencing , Leukocytes, Mononuclear , Receptors, Antigen, B-Cell/genetics
7.
Article in English | MEDLINE | ID: mdl-26980512

ABSTRACT

Annotation of orthologous and paralogous genes is necessary for many aspects of evolutionary analysis. Methods to infer these homology relationships have traditionally focused on protein-coding genes and evolutionary models used by these methods normally assume the positions in the protein evolve independently. However, as our appreciation for the roles of non-coding RNA genes has increased, consistently annotated sets of orthologous and paralogous ncRNA genes are increasingly needed. At the same time, methods such as PHASE or RAxML have implemented substitution models that consider pairs of sites to enable proper modelling of the loops and other features of RNA secondary structure. Here, we present a comprehensive analysis pipeline for the automatic detection of orthologues and paralogues for ncRNA genes. We focus on gene families represented in Rfam and for which a specific covariance model is provided. For each family ncRNA genes found in all Ensembl species are aligned using Infernal, and several trees are built using different substitution models. In parallel, a genomic alignment that includes the ncRNA genes and their flanking sequence regions is built with PRANK. This alignment is used to create two additional phylogenetic trees using the neighbour-joining (NJ) and maximum-likelihood (ML) methods. The trees arising from both the ncRNA and genomic alignments are merged using TreeBeST, which reconciles them with the species tree in order to identify speciation and duplication events. The final tree is used to infer the orthologues and paralogues following Fitch's definition. We also determine gene gain and loss events for each family using CAFE. All data are accessible through the Ensembl Comparative Genomics ('Compara') API, on our FTP site and are fully integrated in the Ensembl genome browser, where they can be accessed in a user-friendly manner. Database URL: http://www.ensembl.org.


Subject(s)
Computational Biology/methods , RNA, Untranslated/genetics , Vertebrates/genetics , Algorithms , Animals , Ciona intestinalis , Cyprinodontiformes , Evolution, Molecular , Genetic Variation , Genome , Genomics , Humans , Likelihood Functions , Mice , Nucleic Acid Conformation , Open Reading Frames , Phylogeny , Rats , Zebrafish
8.
Article in English | MEDLINE | ID: mdl-26896847

ABSTRACT

Evolution provides the unifying framework with which to understand biology. The coherent investigation of genic and genomic data often requires comparative genomics analyses based on whole-genome alignments, sets of homologous genes and other relevant datasets in order to evaluate and answer evolutionary-related questions. However, the complexity and computational requirements of producing such data are substantial: this has led to only a small number of reference resources that are used for most comparative analyses. The Ensembl comparative genomics resources are one such reference set that facilitates comprehensive and reproducible analysis of chordate genome data. Ensembl computes pairwise and multiple whole-genome alignments from which large-scale synteny, per-base conservation scores and constrained elements are obtained. Gene alignments are used to define Ensembl Protein Families, GeneTrees and homologies for both protein-coding and non-coding RNA genes. These resources are updated frequently and have a consistent informatics infrastructure and data presentation across all supported species. Specialized web-based visualizations are also available including synteny displays, collapsible gene tree plots, a gene family locator and different alignment views. The Ensembl comparative genomics infrastructure is extensively reused for the analysis of non-vertebrate species by other projects including Ensembl Genomes and Gramene and much of the information here is relevant to these projects. The consistency of the annotation across species and the focus on vertebrates makes Ensembl an ideal system to perform and support vertebrate comparative genomic analyses. We use robust software and pipelines to produce reference comparative data and make it freely available. Database URL: http://www.ensembl.org.


Subject(s)
Computational Biology/methods , Genome , Genomics , Algorithms , Animals , DNA, Complementary/genetics , Databases, Genetic , Evolution, Molecular , Expressed Sequence Tags , Humans , Phylogeny , Quality Control , RNA, Untranslated/genetics , Sequence Alignment , Sequence Analysis, RNA , Software
9.
Bioinformatics ; 31(12): 2032-4, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25697820

ABSTRACT

UNLABELLED: Sambamba is a high-performance robust tool and library for working with SAM, BAM and CRAM sequence alignment files; the most common file formats for aligned next generation sequencing data. Sambamba is a faster alternative to samtools that exploits multi-core processing and dramatically reduces processing time. Sambamba is being adopted at sequencing centers, not only because of its speed, but also because of additional functionality, including coverage analysis and powerful filtering capability. AVAILABILITY AND IMPLEMENTATION: Sambamba is free and open source software, available under a GPLv2 license. Sambamba can be downloaded and installed from http://www.open-bio.org/wiki/Sambamba.Sambamba v0.5.0 was released with doi:10.5281/zenodo.13200.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Software , Algorithms , Genomics , Humans , Sequence Alignment
10.
Bioinformatics ; 28(13): 1684-91, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22531217

ABSTRACT

MOTIVATION: Accurate alignment of large numbers of sequences is demanding and the computational burden is further increased by downstream analyses depending on these alignments. With the abundance of sequence data, an integrative approach of adding new sequences to existing alignments without their full re-computation and maintaining the relative matching of existing sequences is an attractive option. Another current challenge is the extension of reference alignments with fragmented sequences, as those coming from next-generation metagenomics, that contain relatively little information. Widely used methods for alignment extension are based on profile representation of reference sequences. These do not incorporate and use phylogenetic information and are affected by the composition of the reference alignment and the phylogenetic positions of query sequences. RESULTS: We have developed a method for phylogeny-aware alignment of partial-order sequence graphs and apply it here to the extension of alignments with new data. Our new method, called PAGAN, infers ancestral sequences for the reference alignment and adds new sequences in their phylogenetic context, either to predefined positions or by finding the best placement for sequences of unknown origin. Unlike profile-based alternatives, PAGAN considers the phylogenetic relatedness of the sequences and is not affected by inclusion of more diverged sequences in the reference set. Our analyses show that PAGAN outperforms alternative methods for alignment extension and provides superior accuracy for both DNA and protein data, the improvement being especially large for fragmented sequences. Moreover, PAGAN-generated alignments of noisy next-generation sequencing (NGS) sequences are accurate enough for the use of RNA-seq data in evolutionary analyses. AVAILABILITY: PAGAN is written in C++, licensed under the GPL and its source code is available at http://code.google.com/p/pagan-msa.


Subject(s)
Algorithms , Phylogeny , Sequence Alignment/methods , Sequence Analysis, DNA/methods , Sequence Analysis, Protein , Software
11.
Nature ; 483(7388): 169-75, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22398555

ABSTRACT

Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution.


Subject(s)
Evolution, Molecular , Genetic Speciation , Genome/genetics , Gorilla gorilla/genetics , Animals , Female , Gene Expression Regulation , Genetic Variation/genetics , Genomics , Humans , Macaca mulatta/genetics , Molecular Sequence Data , Pan troglodytes/genetics , Phylogeny , Pongo/genetics , Proteins/genetics , Sequence Alignment , Species Specificity , Transcription, Genetic
12.
Cell ; 148(4): 780-91, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22341448

ABSTRACT

The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations.


Subject(s)
Facial Neoplasms/veterinary , Genomic Instability , Marsupialia/genetics , Mutation , Animals , Clonal Evolution , Endangered Species , Facial Neoplasms/epidemiology , Facial Neoplasms/genetics , Facial Neoplasms/pathology , Female , Genome-Wide Association Study , Male , Molecular Sequence Data , Tasmania/epidemiology
13.
Nature ; 478(7370): 476-82, 2011 Oct 12.
Article in English | MEDLINE | ID: mdl-21993624

ABSTRACT

The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering ∼4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for ∼60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease.


Subject(s)
Evolution, Molecular , Genome, Human/genetics , Genome/genetics , Mammals/genetics , Animals , Disease , Exons/genetics , Genomics , Health , Humans , Molecular Sequence Annotation , Phylogeny , RNA/classification , RNA/genetics , Selection, Genetic/genetics , Sequence Alignment , Sequence Analysis, DNA
14.
RNA ; 17(11): 1941-6, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21940779

ABSTRACT

During the last decade there has been a great increase in the number of noncoding RNA genes identified, including new classes such as microRNAs and piRNAs. There is also a large growth in the amount of experimental characterization of these RNA components. Despite this growth in information, it is still difficult for researchers to access RNA data, because key data resources for noncoding RNAs have not yet been created. The most pressing omission is the lack of a comprehensive RNA sequence database, much like UniProt, which provides a comprehensive set of protein knowledge. In this article we propose the creation of a new open public resource that we term RNAcentral, which will contain a comprehensive collection of RNA sequences and fill an important gap in the provision of biomedical databases. We envision RNA researchers from all over the world joining a federated RNAcentral network, contributing specialized knowledge and databases. RNAcentral would centralize key data that are currently held across a variety of databases, allowing researchers instant access to a single, unified resource. This resource would facilitate the next generation of RNA research and help drive further discoveries, including those that improve food production and human and animal health. We encourage additional RNA database resources and research groups to join this effort. We aim to obtain international network funding to further this endeavor.


Subject(s)
Databases, Nucleic Acid , RNA/chemistry , Animals , Base Sequence , Humans
16.
Nature ; 469(7331): 529-33, 2011 Jan 27.
Article in English | MEDLINE | ID: mdl-21270892

ABSTRACT

'Orang-utan' is derived from a Malay term meaning 'man of the forest' and aptly describes the southeast Asian great apes native to Sumatra and Borneo. The orang-utan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes from humans, thereby providing an informative perspective on hominid evolution. Here we present a Sumatran orang-utan draft genome assembly and short read sequence data from five Sumatran and five Bornean orang-utan genomes. Our analyses reveal that, compared to other primates, the orang-utan genome has many unique features. Structural evolution of the orang-utan genome has proceeded much more slowly than other great apes, evidenced by fewer rearrangements, less segmental duplication, a lower rate of gene family turnover and surprisingly quiescent Alu repeats, which have played a major role in restructuring other primate genomes. We also describe a primate polymorphic neocentromere, found in both Pongo species, emphasizing the gradual evolution of orang-utan genome structure. Orang-utans have extremely low energy usage for a eutherian mammal, far lower than their hominid relatives. Adding their genome to the repertoire of sequenced primates illuminates new signals of positive selection in several pathways including glycolipid metabolism. From the population perspective, both Pongo species are deeply diverse; however, Sumatran individuals possess greater diversity than their Bornean counterparts, and more species-specific variation. Our estimate of Bornean/Sumatran speciation time, 400,000 years ago, is more recent than most previous studies and underscores the complexity of the orang-utan speciation process. Despite a smaller modern census population size, the Sumatran effective population size (N(e)) expanded exponentially relative to the ancestral N(e) after the split, while Bornean N(e) declined over the same period. Overall, the resources and analyses presented here offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts.


Subject(s)
Genetic Variation , Genome/genetics , Pongo abelii/genetics , Pongo pygmaeus/genetics , Animals , Centromere/genetics , Cerebrosides/metabolism , Chromosomes , Evolution, Molecular , Female , Gene Rearrangement/genetics , Genetic Speciation , Genetics, Population , Humans , Male , Phylogeny , Population Density , Population Dynamics , Species Specificity
17.
Nucleic Acids Res ; 39(Database issue): D800-6, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21045057

ABSTRACT

The Ensembl project (http://www.ensembl.org) seeks to enable genomic science by providing high quality, integrated annotation on chordate and selected eukaryotic genomes within a consistent and accessible infrastructure. All supported species include comprehensive, evidence-based gene annotations and a selected set of genomes includes additional data focused on variation, comparative, evolutionary, functional and regulatory annotation. The most advanced resources are provided for key species including human, mouse, rat and zebrafish reflecting the popularity and importance of these species in biomedical research. As of Ensembl release 59 (August 2010), 56 species are supported of which 5 have been added in the past year. Since our previous report, we have substantially improved the presentation and integration of both data of disease relevance and the regulatory state of different cell types.


Subject(s)
Databases, Genetic , Genomics , Animals , Genetic Variation , Humans , Mice , Molecular Sequence Annotation , Rats , Regulatory Sequences, Nucleic Acid , Software , Zebrafish/genetics
18.
BMC Bioinformatics ; 11: 240, 2010 May 11.
Article in English | MEDLINE | ID: mdl-20459813

ABSTRACT

BACKGROUND: The Ensembl project produces updates to its comparative genomics resources with each of its several releases per year. During each release cycle approximately two weeks are allocated to generate all the genomic alignments and the protein homology predictions. The number of calculations required for this task grows approximately quadratically with the number of species. We currently support 50 species in Ensembl and we expect the number to continue to grow in the future. RESULTS: We present eHive, a new fault tolerant distributed processing system initially designed to support comparative genomic analysis, based on blackboard systems, network distributed autonomous agents, dataflow graphs and block-branch diagrams. In the eHive system a MySQL database serves as the central blackboard and the autonomous agent, a Perl script, queries the system and runs jobs as required. The system allows us to define dataflow and branching rules to suit all our production pipelines. We describe the implementation of three pipelines: (1) pairwise whole genome alignments, (2) multiple whole genome alignments and (3) gene trees with protein homology inference. Finally, we show the efficiency of the system in real case scenarios. CONCLUSIONS: eHive allows us to produce computationally demanding results in a reliable and efficient way with minimal supervision and high throughput. Further documentation is available at: http://www.ensembl.org/info/docs/eHive/.


Subject(s)
Genome , Genomics/methods , Software , Databases, Genetic
19.
Nature ; 464(7289): 757-62, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20360741

ABSTRACT

The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken-the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.


Subject(s)
Finches/genetics , Genome/genetics , 3' Untranslated Regions/genetics , Animals , Auditory Perception/genetics , Brain/physiology , Chickens/genetics , Evolution, Molecular , Female , Finches/physiology , Gene Duplication , Gene Regulatory Networks/genetics , Male , MicroRNAs/genetics , Models, Animal , Multigene Family/genetics , Retroelements/genetics , Sex Chromosomes/genetics , Terminal Repeat Sequences/genetics , Transcription, Genetic/genetics , Vocalization, Animal/physiology
20.
Nucleic Acids Res ; 38(Database issue): D557-62, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19906699

ABSTRACT

Ensembl (http://www.ensembl.org) integrates genomic information for a comprehensive set of chordate genomes with a particular focus on resources for human, mouse, rat, zebrafish and other high-value sequenced genomes. We provide complete gene annotations for all supported species in addition to specific resources that target genome variation, function and evolution. Ensembl data is accessible in a variety of formats including via our genome browser, API and BioMart. This year marks the tenth anniversary of Ensembl and in that time the project has grown with advances in genome technology. As of release 56 (September 2009), Ensembl supports 51 species including marmoset, pig, zebra finch, lizard, gorilla and wallaby, which were added in the past year. Major additions and improvements to Ensembl since our previous report include the incorporation of the human GRCh37 assembly, enhanced visualisation and data-mining options for the Ensembl regulatory features and continued development of our software infrastructure.


Subject(s)
Computational Biology/methods , Databases, Genetic , Databases, Nucleic Acid , Access to Information , Animals , Computational Biology/trends , Databases, Protein , Genetic Variation , Genomics/methods , Humans , Information Storage and Retrieval/methods , Internet , Protein Structure, Tertiary , Software , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...