Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 312, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35013333

ABSTRACT

We have recently introduced a new semiconductor laser design which is based on an extreme, 99%, reduction of the laser mode absorption losses. In previous reports, we showed that this was achieved by a laser mode design which confines the great majority of the modal energy (> 99%) in a low-loss Silicon guiding layer rather than in highly-doped, thus lossy, III-V p[Formula: see text] and n[Formula: see text] layers, which is the case with traditional III-V lasers. The resulting reduced electron-field interaction was shown to lead to a commensurate reduction of the spontaneous emission rate by the excited conduction band electrons into the laser mode and thus to a reduction of the frequency noise spectral density of the laser field often characterized by the Schawlow-Townes linewidth. In this paper, we demonstrate theoretically and present experimental evidence of yet another major beneficial consequence of the new laser design: a near total elimination of the contribution of amplitude-phase coupling (the Henry [Formula: see text] parameter) to the frequency noise at "high" frequencies. This is due to an order of magnitude lowering of the relaxation resonance frequency of the laser. Here, we show that the practical elimination of this coupling enables yet another order of magnitude reduction of the frequency noise at high frequencies, resulting in a quantum-limited frequency noise spectral density of 130 Hz[Formula: see text]/Hz (linewidth of 0.4 kHz) for frequencies beyond the relaxation resonance frequency 680 MHz. This development is of key importance in the development of semiconductor lasers with higher coherence, particularly in the context of integrated photonics with a small laser footprint without requiring any sort of external cavity.

2.
Proc Natl Acad Sci U S A ; 115(34): E7896-E7904, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30087187

ABSTRACT

Few laser systems allow access to the light-emitter interaction as versatile and direct as that afforded by semiconductor lasers. Such a level of access can be exploited for the control of the coherence and dynamic properties of the laser. Here, we demonstrate, theoretically and experimentally, the reduction of the quantum phase noise of a semiconductor laser through the direct control of the spontaneous emission into the laser mode, exercised via the precise and deterministic manipulation of the optical mode's spatial field distribution. Central to the approach is the recognition of the intimate interplay between spontaneous emission and optical loss. A method of leveraging and "walking" this fine balance to its limit is described. As a result, some two orders of magnitude reduction in quantum noise over the state of the art in semiconductor lasers, corresponding to a minimum linewidth of [Formula: see text], is demonstrated. Further implications, including an additional order-of-magnitude enhancement in effective coherence by way of control of the relaxation oscillation resonance frequency and enhancement of the intrinsic immunity to optical feedback, highlight the potential of the proposed concept for next-generation, integrated coherent systems.

3.
Proc Natl Acad Sci U S A ; 111(8): 2879-84, 2014 Feb 25.
Article in English | MEDLINE | ID: mdl-24516134

ABSTRACT

The semiconductor laser (SCL) is the principal light source powering the worldwide optical fiber network. The ever-increasing demand for data is causing the network to migrate to phase-coherent modulation formats, which place strict requirements on the temporal coherence of the light source that no longer can be met by current SCLs. This failure can be traced directly to the canonical laser design, in which photons are both generated and stored in the same, optically lossy, III-V material. This leads to an excessive and large amount of noisy spontaneous emission commingling with the laser mode, thereby degrading its coherence. High losses also decrease the amount of stored optical energy in the laser cavity, magnifying the effect of each individual spontaneous emission event on the phase of the laser field. Here, we propose a new design paradigm for the SCL. The keys to this paradigm are the deliberate removal of stored optical energy from the lossy III-V material by concentrating it in a passive, low-loss material and the incorporation of a very high-Q resonator as an integral (i.e., not externally coupled) part of the laser cavity. We demonstrate an SCL with a spectral linewidth of 18 kHz in the telecom band around 1.55 µm, achieved using a single-mode silicon resonator with Q of 10(6).


Subject(s)
Electricity , Fiber Optic Technology/trends , Lasers, Semiconductor , Optical Fibers/standards , Silicon/chemistry , Fiber Optic Technology/methods , Optical Fibers/trends , Photons , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...