Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 114(37): 11993-2001, 2010 Sep 23.
Article in English | MEDLINE | ID: mdl-20804203

ABSTRACT

The molecular dynamics of a chiral liquid crystal showing a rich variety of frustrated mesophases has been investigated by means of 1H NMR relaxometry. The interest in this lactate derivative, HZL 7/*, is related to a large range of thermal stabilities of the twist grain boundary (TGB) phases. Dispersions of the 1H spin-lattice relaxation times, T1, in the frequency range from 300 MHz to 5 kHz were measured and consistently analyzed in the isotropic, chiral nematic, TGBA*, and two TGBC* phases. In the isotropic and N* phases, a three-exponential magnetization decay was observed and assigned to three specific molecular groups of the HZL 7/* (molecular core, methyl, and methylene groups). In the TGB phases, all T1 components merge into a single one. The analysis of the T1 dispersion in the TGBA* phase shows that the translational self-diffusion relaxation mechanism dominates over a broad frequency range and that layer undulations are less relevant than the relaxation contribution associated with the diffusion process across the TGB structure. In the TGBC1* phase, the T1 dispersion presents a strong contribution of in-layer tilt direction fluctuations (T1(-1) proportional to ν(-1/2)), while, in the TGBC2* phase, the linear frequency dependence of T1 could be associated with a much stronger contribution of layer undulations than for the other TGB phases. This is at present the first molecular dynamics investigation on several TGB phases by means of 1H NMR relaxometry.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(3 Pt 1): 031701, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15524537

ABSTRACT

The collective and individual dynamics of decylammonium chloride (DACl) molecules in water environment were investigated as a function of surfactant concentration and temperature. In the presence of water the DACl forms a variety of self-assembled structures, ranging from isotropic micellar systems to lyotropic liquid crystalline phases of hexagonal, nematic, and lamellar types. In order to characterize the complex molecular dynamics that occur in the DACl-water system, we applied 1H and 2H NMR techniques that cover the whole frequency range between 1 kHz and 30 MHz. The slow molecular dynamics were studied by 1H NMR fast-field-cycling T1 measurements and pulse-frequency dependence of 2H NMR transverse relaxation time, performed by means of the Carr-Purcell-Meiboom-Gill sequence. We detected a well-expressed contribution of order director fluctuations, i.e., layer undulations, with characteristic omega(-1)(L) frequency dependence of T(-1)(1) in the lamellar phase. Its presence indicates a relatively weak impact of interactions between neighboring DACl layers. The frequency dependence of proton T(-1)(1) in the hexagonal phase exhibits a different type of frequency dispersion, T(-1)(1) approximately omega(-1.32)(L). The increase in the exponent is explained with the quasi-one-dimensional character of fluctuations in elongated cylinders. Further, the T1 and T2 relaxation times of deuterons selectively attached to the C2 and C7 segments of the hydrocarbon chains of DACl were measured at a Larmor frequency of 30.7 MHz, providing quantitative information about local molecular dynamics.

3.
J Chem Phys ; 120(18): 8638-44, 2004 May 08.
Article in English | MEDLINE | ID: mdl-15267792

ABSTRACT

We discuss the nuclear spin relaxation resulting from molecular translational diffusion of a liquid crystal in the isotropic phase confined to spherical microcavities. The relaxation is induced by the time modulation of spin interactions as molecules diffuse between the ordered surface layer into the isotropic interior volume and back. The calculated spin-lattice relaxation rate T(1) (-1) shows three distinct dispersion regimes: a plateau at the lowest frequencies, practically independent of the size of the cavity, an intermediate power-law dispersion regime with an exponent between -0.7 and -1, depending on the spatial profile of the order parameter and cavity radius, and at frequencies above 1 MHz a strong dispersion tending toward the quadratic dependence of the relaxation rate on the Larmor frequency in the high-frequency limit. The pretransitional increase in T(1) (-1) depends drastically on the Larmor frequency. The frequency and temperature dependences of T(1) (-1) yield not only information on the magnitude of the surface order parameter, but also on its spatial profile, revealing the type of liquid-crystal-substrate interactions. Apart from thermotropic liquid crystals in the isotropic phase, this analysis can be also applied to other fluids in porous media.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(2 Pt 1): 021710, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12241199

ABSTRACT

Using deuteron nuclear magnetic resonance (NMR) and dynamic light scattering, we study the orientational order and dynamics of a BL038-5CB liquid-crystal mixture in a holographic polymer dispersed liquid-crystal material (HPDLC) as used for switchable diffractive optical elements. At high temperatures, where the liquid crystal is predominantly in the isotropic phase, the HPDLC deuteron NMR linewidth and transverse spin-relaxation rate T-12 are two orders of magnitude larger than in the bulk. The analysis shows that the surface-induced order parameter in HPDLC is significantly larger than in similar confining systems and that translational diffusion of molecules in the surface layer is at least two orders of magnitude slower than in the rest of the cavity. The unusual temperature dependence of T-12 upon cooling suggests the possibility of a partial separation of the 5CB component in the liquid-crystal mixture. The onset of the nematic phase in HPDLC occurs at considerably lower temperature than in the bulk and takes place gradually due to different sizes and different content of non-liquid-crystalline ingredients in droplets. Parts of the droplets are found isotropic even at room temperature and the structure of the nematic director field in the droplets is only slightly anisotropic. We point out the capability of NMR to detect the actual state of liquid-crystalline order in HPDLCs and to contribute in this way to the improvement of the switching efficiency of diffraction gratings.

SELECTION OF CITATIONS
SEARCH DETAIL
...