Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Front Fungal Biol ; 5: 1401427, 2024.
Article in English | MEDLINE | ID: mdl-38863761

ABSTRACT

Ectomycorrhizal fungi and non-ectomycorrhizal fungi are responsive to changes in environmental and nutrient availabilities. Although many species of ectomycorrhizas are known to enhance the uptake of phosphorus and other nutrients for Pinus taeda, it is not understood how to optimize these communities to have tangible effects on plantation silviculture and P use efficiency. The first step of this process is the identification of native fungi present in the system that are associated with P. taeda and influence P uptake efficiency. We used sand-filled mesh bags baited with finely ground apatite to sample ectomycorrhizal and non-ectomycorrhizal fungi associated with the rhizosphere of P-responsive P. taeda under several field conditions. Mesh bags were assessed for biomass accumulation over three years using a single three-month burial period pre-harvest and three six-month burial periods post-planting. Amplicon sequencing assessed ectomycorrhizal and non-ectomycorrhizal communities between phosphorus treatments, sites, mesh bags, and the rhizosphere of actively growing P. taeda in the field. We found biomass accumulation within the mesh bags was inversely related to increasing phosphorus fertilization (carryover) rates from pre-harvest to post-planting. Up to 25% increases in total biomass within the bags were observed for bags baited with P. Taxonomic richness was highest in Alfisol soils treated with phosphorus from the previous rotation and lowest in the Spodosol regardless of phosphorus treatment.

2.
New Phytol ; 242(4): 1448-1475, 2024 May.
Article in English | MEDLINE | ID: mdl-38581203

ABSTRACT

Research on mycorrhizal symbiosis has been slowed by a lack of established study systems. To address this challenge, we have been developing Suillus, a widespread ecologically and economically relevant fungal genus primarily associated with the plant family Pinaceae, into a model system for studying ectomycorrhizal (ECM) associations. Over the last decade, we have compiled extensive genomic resources, culture libraries, a phenotype database, and protocols for manipulating Suillus fungi with and without their tree partners. Our efforts have already resulted in a large number of publicly available genomes, transcriptomes, and respective annotations, as well as advances in our understanding of mycorrhizal partner specificity and host communication, fungal and plant nutrition, environmental adaptation, soil nutrient cycling, interspecific competition, and biological invasions. Here, we highlight the most significant recent findings enabled by Suillus, present a suite of protocols for working with the genus, and discuss how Suillus is emerging as an important model to elucidate the ecology and evolution of ECM interactions.


Subject(s)
Biological Evolution , Models, Biological , Mycorrhizae , Mycorrhizae/physiology , Mycorrhizae/genetics , Ecology , Symbiosis/genetics , Basidiomycota/physiology , Basidiomycota/genetics
3.
mSystems ; 9(4): e0122523, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38470040

ABSTRACT

Ectomycorrhizal fungi establish mutually beneficial relationships with trees, trading nutrients for carbon. Suillus are ectomycorrhizal fungi that are critical to the health of boreal and temperate forest ecosystems. Comparative genomics has identified a high number of non-ribosomal peptide synthetase and terpene biosynthetic gene clusters (BGC) potentially involved in fungal competition and communication. However, the functionality of these BGCs is not known. This study employed co-culture techniques to activate BGC expression and then used metabolomics to investigate the diversity of metabolic products produced by three Suillus species (Suillus hirtellus EM16, Suillus decipiens EM49, and Suillus cothurnatus VC1858), core members of the pine microbiome. After 28 days of growth on solid media, liquid chromatography-tandem mass spectrometry identified a diverse range of extracellular metabolites (exometabolites) along the interaction zone between Suillus co-cultures. Prenol lipids were among the most abundant chemical classes. Out of the 62 unique terpene BGCs predicted by genome mining, 41 putative prenol lipids (includes 37 putative terpenes) were identified across the three Suillus species using metabolomics. Notably, some terpenes were significantly more abundant in co-culture conditions. For example, we identified a metabolite matching to isomers isopimaric acid, sandaracopimaric acid, and abietic acid, which can be found in pine resin and play important roles in host defense mechanisms and Suillus spore germination. This research highlights the importance of combining genomics and metabolomics to advance our understanding of the chemical diversity underpinning fungal signaling and communication.IMPORTANCEUsing a combination of genomics and metabolomics, this study's findings offer new insights into the chemical diversity of Suillus fungi, which serve a critical role in forest ecosystems.


Subject(s)
Agaricales , Hemiterpenes , Microbiota , Mycorrhizae , Pentanols , Terpenes , Mycorrhizae/genetics , Lipids
4.
New Phytol ; 242(2): 658-674, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38375883

ABSTRACT

The jasmonic acid (JA) signalling pathway plays an important role in the establishment of the ectomycorrhizal symbiosis. The Laccaria bicolor effector MiSSP7 stabilizes JA corepressor JAZ6, thereby inhibiting the activity of Populus MYC2 transcription factors. Although the role of MYC2 in orchestrating plant defences against pathogens is well established, its exact contribution to ECM symbiosis remains unclear. This information is crucial for understanding the balance between plant immunity and symbiotic relationships. Transgenic poplars overexpressing or silencing for the two paralogues of MYC2 transcription factor (MYC2s) were produced, and their ability to establish ectomycorrhiza was assessed. Transcriptomics and DNA affinity purification sequencing were performed. MYC2s overexpression led to a decrease in fungal colonization, whereas its silencing increased it. The enrichment of terpene synthase genes in the MYC2-regulated gene set suggests a complex interplay between the host monoterpenes and fungal growth. Several root monoterpenes have been identified as inhibitors of fungal growth and ECM symbiosis. Our results highlight the significance of poplar MYC2s and terpenes in mutualistic symbiosis by controlling root fungal colonization. We identified poplar genes which direct or indirect control by MYC2 is required for ECM establishment. These findings deepen our understanding of the molecular mechanisms underlying ECM symbiosis.


Subject(s)
Cyclopentanes , Laccaria , Mycorrhizae , Oxylipins , Populus , Mycorrhizae/genetics , Populus/metabolism , Plant Roots/metabolism , Symbiosis/genetics , Laccaria/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Monoterpenes/metabolism
5.
Mol Ecol Resour ; 24(1): e13885, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37902171

ABSTRACT

Multi-locus sequence data are widely used in fungal systematic and taxonomic studies to delimit species and infer evolutionary relationships. We developed and assessed the efficacy of a multi-locus pooled sequencing method using PacBio long-read high-throughput sequencing. Samples included fresh and dried voucher specimens, cultures and archival DNA extracts of Agaricomycetes with an emphasis on the order Cantharellales. Of the 283 specimens sequenced, 93.6% successfully amplified at one or more loci with a mean of 3.3 loci amplified. Our method recovered multiple sequence variants representing alleles of rDNA loci and single copy protein-coding genes rpb1, rpb2 and tef1. Within-sample genetic variation differed by locus and taxonomic group, with the greatest genetic divergence observed among sequence variants of rpb2 and tef1 from corticioid Cantharellales. Our method is a cost-effective approach for generating accurate multi-locus sequence data coupled with recovery of alleles from polymorphic samples and multi-organism specimens. These results have important implications for understanding intra-individual genomic variation among genetic loci commonly used in species delimitation of fungi.


Subject(s)
Agaricales , Sequence Analysis, DNA , Phylogeny , Genetic Variation , High-Throughput Nucleotide Sequencing , Fungi
6.
bioRxiv ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38045323

ABSTRACT

Ectomycorrhizal fungi establish mutually beneficial relationships with trees, trading nutrients for carbon. Suillus are ectomycorrhizal fungi that are critical to the health of boreal and temperate forest ecosystems. Comparative genomics has identified a high number of non-ribosomal peptide synthetase and terpene biosynthetic gene clusters (BGC) potentially involved in fungal competition and communication. However, the functionality of these BGCs is not known. This study employed co-culture techniques to activate BGC expression and then used metabolomics to investigate the diversity of metabolic products produced by three Suillus species ( S. hirtellus EM16, S. decipiens EM49, and S. cothurnatus VC1858), core members of the Pine microbiome. After 28 days of growth on solid media, liquid chromatography-tandem mass spectrometry identified a diverse range of extracellular metabolites (exometabolites) along the interaction zone between Suillus co-cultures. Prenol lipids were among the most abundant chemical classes. Out of the 62 unique terpene BGCs predicted by genome mining, 116 putative terpenes were identified across the three Suillus species using metabolomics. Notably, some terpenes were significantly more abundant in co-culture conditions. For example, we identified a metabolite matching to isomers isopimaric acid, sandaracopimaric acid, and abietic acid, which can be found in pine resin and play important roles in host defense mechanisms and Suillus spore germination. This research highlights the importance of combining genomics and metabolomics to advance our understanding of the chemical diversity underpinning fungal signaling and communication. Importance: Using a combination of genomics and metabolomics, this study's findings offer new insights into the signaling and communication of Suillus fungi, which serve a critical role in forest ecosystems.

7.
New Phytol ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38062903

ABSTRACT

Iron (Fe) is crucial for metabolic functions of living organisms. Plants access occluded Fe through interactions with rhizosphere microorganisms and symbionts. Yet, the interplay between Fe addition and plant-mycorrhizal interactions, especially the molecular mechanisms underlying mycorrhiza-assisted Fe processing in plants, remains largely unexplored. We conducted mesocosms in Pinus plants inoculated with different ectomycorrhizal fungi (EMF) Suillus species under conditions with and without Fe coatings. Meta-transcriptomic, biogeochemical, and X-ray fluorescence imaging analyses were applied to investigate early-stage mycorrhizal roots. While Fe addition promoted Pinus growth, it concurrently reduced mycorrhiza formation rate, symbiosis-related metabolites in plant roots, and aboveground plant carbon and macronutrient content. This suggested potential trade-offs between Fe-enhanced plant growth and symbiotic performance. However, the extent of this trade-off may depend on interactions between host plants and EMF species. Interestingly, dual EMF species were more effective at facilitating plant Fe uptake by inducing diverse Fe-related functions than single-EMF species. This subsequently triggered various Fe-dependent physiological and biochemical processes in Pinus roots, significantly contributing to Pinus growth. However, this resulted in a greater carbon allocation to roots, relatively reducing the aboveground plant carbon content. Our study offers critical insights into how EMF communities rebalance benefits of Fe-induced effects on symbiotic partners.

8.
Microorganisms ; 11(7)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37513002

ABSTRACT

The first genome sequenced of a eukaryotic organism was for Saccharomyces cerevisiae, as reported in 1996, but it was more than 10 years before any of the zygomycete fungi, which are the early-diverging terrestrial fungi currently placed in the phyla Mucoromycota and Zoopagomycota, were sequenced. The genome for Rhizopus delemar was completed in 2008; currently, more than 1000 zygomycete genomes have been sequenced. Genomic data from these early-diverging terrestrial fungi revealed deep phylogenetic separation of the two major clades-primarily plant-associated saprotrophic and mycorrhizal Mucoromycota versus the primarily mycoparasitic or animal-associated parasites and commensals in the Zoopagomycota. Genomic studies provide many valuable insights into how these fungi evolved in response to the challenges of living on land, including adaptations to sensing light and gravity, development of hyphal growth, and co-existence with the first terrestrial plants. Genome sequence data have facilitated studies of genome architecture, including a history of genome duplications and horizontal gene transfer events, distribution and organization of mating type loci, rDNA genes and transposable elements, methylation processes, and genes useful for various industrial applications. Pathogenicity genes and specialized secondary metabolites have also been detected in soil saprobes and pathogenic fungi. Novel endosymbiotic bacteria and viruses have been discovered during several zygomycete genome projects. Overall, genomic information has helped to resolve a plethora of research questions, from the placement of zygomycetes on the evolutionary tree of life and in natural ecosystems, to the applied biotechnological and medical questions.

9.
Genetics ; 224(2)2023 05 26.
Article in English | MEDLINE | ID: mdl-37070772

ABSTRACT

Studying the signatures of evolution can help to understand genetic processes. Here, we demonstrate how the existence of balancing selection can be used to identify the breeding systems of fungi from genomic data. The breeding systems of fungi are controlled by self-incompatibility loci that determine mating types between potential mating partners, resulting in strong balancing selection at the loci. Within the fungal phylum Basidiomycota, two such self-incompatibility loci, namely HD MAT locus and P/R MAT locus, control mating types of gametes. Loss of function at one or both MAT loci results in different breeding systems and relaxes the MAT locus from balancing selection. By investigating the signatures of balancing selection at MAT loci, one can infer a species' breeding system without culture-based studies. Nevertheless, the extreme sequence divergence among MAT alleles imposes challenges for retrieving full variants from both alleles when using the conventional read-mapping method. Therefore, we employed a combination of read-mapping and local de novo assembly to construct haplotypes of HD MAT alleles from genomes in suilloid fungi (genera Suillus and Rhizopogon). Genealogy and pairwise divergence of HD MAT alleles showed that the origins of mating types predate the split between these two closely related genera. High sequence divergence, trans-specific polymorphism, and the deeply diverging genealogy confirm the long-term functionality and multiallelic status of HD MAT locus in suilloid fungi. This work highlights a genomics approach to studying breeding systems regardless of the culturability of organisms based on the interplay between evolution and genetics.


Subject(s)
Basidiomycota , Evolution, Molecular , Plant Breeding , Basidiomycota/genetics , Genomics , Polymorphism, Genetic , Genes, Mating Type, Fungal/genetics , Phylogeny , Fungi/genetics
11.
J Fungi (Basel) ; 8(8)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-36012777

ABSTRACT

Fungi of the Conidiobolus group belong to the family Ancylistaceae (Entomophthorales, Entomophthoromycotina, Zoopagomycota) and include over 70 predominantly saprotrophic species in four similar and closely related genera, that were separated phylogenetically recently. Entomopathogenic fungi of the genus Batkoa are very close morphologically to the Conidiobolus species. Their thalli share similar morphology, and they produce ballistic conidia like closely related entomopathogenic Entomophthoraceae. Ballistic conidia are traditionally considered as an efficient tool in the pathogenic process and an important adaptation to the parasitic lifestyle. Our study aims to reconstruct the phylogeny of this fungal group using molecular and genomic data, ancestral lifestyle and morphological features of the conidiobolus-like group and the direction of their evolution. Based on phylogenetic analysis, some species previously in the family Conidiobolaceae are placed in the new families Capillidiaceae and Neoconidiobolaceae, which each include one genus, and the Conidiobolaceae now includes three genera. Intermediate between the conidiobolus-like groups and Entomophthoraceae, species in the distinct Batkoa clade now belong in the family Batkoaceae. Parasitism evolved several times in the Conidiobolus group and Ancestral State Reconstruction suggests that the evolution of ballistic conidia preceded the evolution of the parasitic lifestyle.

12.
Mol Ecol ; 31(10): 3018-3030, 2022 05.
Article in English | MEDLINE | ID: mdl-35313045

ABSTRACT

Closely related species are expected to have similar functional traits due to shared ancestry and phylogenetic inertia. However, few tests of this hypothesis are available for plant-associated fungal symbionts. Fungal leaf endophytes occur in all land plants and can protect their host plant from disease by a variety of mechanisms, including by parasitizing pathogens (e.g., mycoparasitism). Here, we tested whether phylogenetic relatedness among species of Cladosporium, a widespread genus that includes mycoparasitic species, predicts the effect of this endophyte on the severity of leaf rust disease. First, we used congruence among different marker sequences (i.e., genealogical concordance phylogenetic species recognition criterion) to delimit species of Cladosporium. Next, in a controlled experiment, we quantified both mycoparasitism and disease modification for the selected Cladosporium species. We identified 17 species of Cladosporium; all the species reduced rust disease severity in our experiment. Cladosporium phylogeny was a significant predictor of mycoparasitism. However, we did not observe a phylogenetic effect on disease severity overall, indicating that other mechanism/s operating independently of shared ancestry also contributed to endophyte effects on disease severity. Indeed, a second experiment showed that Cladosporium endophyte exudates (no live organism) from divergent species groups equally reduced disease severity. Our results reveal that multiple mechanisms contribute to the protective effects of an endophyte against a plant pathogen, but not all traits underlying these mechanisms are phylogenetically conserved.


Subject(s)
Basidiomycota , Plant Diseases , Basidiomycota/genetics , Cladosporium/genetics , Endophytes , Fungi , Phylogeny , Plant Diseases/microbiology , Plants/microbiology
14.
Front Microbiol ; 12: 680267, 2021.
Article in English | MEDLINE | ID: mdl-34803937

ABSTRACT

Within the forest community, competition and facilitation between adjacent-growing conspecific and heterospecific plants are mediated by interactions involving common mycorrhizal networks. The ability of plants to alter their neighbor's microbiome is well documented, but the molecular biology of plant-fungal interactions during competition and facilitation has not been previously examined. We used a common soil-plant bioassay experiment to study molecular plant-microbial interactions among rhizosphere communities associated with Pinus taeda (native host) and Populus trichocarpa (non-native host). Gene expression of interacting fungal and bacterial rhizosphere communities was compared among three plant-pairs: Populus growing with Populus, Populus with Pinus, and Pinus with Pinus. Our results demonstrate that heterospecific plant partners affect the assembly of root microbiomes, including the changes in the structure of host specific community. Comparative metatranscriptomics reveals that several species of ectomycorrhizal fungi (EMF) and saprotrophic fungi exhibit different patterns of functional and regulatory gene expression with these two plant hosts. Heterospecific plants affect the transcriptional expression pattern of EMF host-specialists (e.g., Pinus-associated Suillus spp.) on both plant species, mainly including the genes involved in the transportation of amino acids, carbohydrates, and inorganic ions. Alteration of root microbiome by neighboring plants may help regulate basic plant physiological processes via modulation of molecular functions in the root microbiome.

15.
Mol Plant Microbe Interact ; 34(6): 711-714, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33522840

ABSTRACT

Clitopilus hobsonii (Entolomataceae, Agaricales, Basidiomycetes) is a common soil saprotroph. There is also evidence that C. hobsonii can act as a root endophyte benefitting tree growth. Here, we report the genome assembly of C. hobsonii QYL-10, isolated from ectomycorrhizal root tips of Quercus lyrata. The genome size is 36.93 Mb, consisting of 13 contigs (N50 = 3.3 Mb) with 49.2% GC content. Of them, 10 contigs approached the length of intact chromosomes, and three had telomeres at one end only. BUSCO analysis reported a completeness score of 98.4%, using Basidiomycota_odb10 lineage data. Combining ab-initio, RNA-seq data, and homology-based predictions, we identified 12,710 protein-coding genes. Approximately, 1.43 Mb of transposable elements (3.88% of the assembly), 36 secondary metabolite biosynthetic gene clusters, and 361 genes encoding putative carbohydrate-active enzymes were identified. This genomic resource will allow functional studies aimed to characterize the symbiotic interactions between C. hobsonii and its host trees and will also provide a valuable foundation for further research on comparative genomics of the Entolomataceae.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Agaricales , Basidiomycota , Agaricales/genetics , Basidiomycota/genetics , DNA Transposable Elements , Endophytes/genetics
16.
PLoS One ; 16(1): e0231367, 2021.
Article in English | MEDLINE | ID: mdl-33406078

ABSTRACT

The ectomycorrhizal fungal symbiont Cenococcum geophilum is of high interest as it is globally distributed, associates with many plant species, and has resistance to multiple environmental stressors. C. geophilum is only known from asexual states but is often considered a cryptic species complex, since extreme phylogenetic divergence is often observed within nearly morphologically identical strains. Alternatively, C. geophilum may represent a highly diverse single species, which would suggest cryptic but frequent recombination. Here we describe a new isolate collection of 229 C. geophilum isolates from soils under Populus trichocarpa at 123 collection sites spanning a ~283 mile north-south transect in Western Washington and Oregon, USA (PNW). To further understanding of the phylogenetic relationships within C. geophilum, we performed maximum likelihood and Bayesian phylogenetic analyses to assess divergence within the PNW isolate collection, as well as a global phylogenetic analysis of 789 isolates with publicly available data from the United States, Japan, and European countries. Phylogenetic analyses of the PNW isolates revealed three distinct phylogenetic groups, with 15 clades that strongly resolved at >80% bootstrap support based on a GAPDH phylogeny and one clade segregating strongly in two principle component analyses. The abundance and representation of PNW isolate clades varied greatly across the North-South range, including a monophyletic group of isolates that spanned nearly the entire gradient at ~250 miles. A direct comparison between the GAPDH and ITS rRNA gene region phylogenies, combined with additional analyses revealed stark incongruence between the ITS and GAPDH gene regions, consistent with intra-species recombination between PNW isolates. In the global isolate collection phylogeny, 34 clades were strongly resolved using Maximum Likelihood and Bayesian approaches (at >80% MLBS and >0.90 BPP respectively), with some clades having intra- and intercontinental distributions. Together these data are highly suggestive of divergence within multiple cryptic species, however additional analyses such as higher resolution genotype-by-sequencing approaches are needed to distinguish potential species boundaries and the mode and tempo of recombination patterns.


Subject(s)
Ascomycota/genetics , Mycorrhizae/genetics , Populus/genetics , Bayes Theorem , DNA, Fungal/genetics , Europe , Genetic Variation/genetics , Genotype , Japan , Phylogeny , RNA, Ribosomal/genetics , Soil , Soil Microbiology , United States
17.
New Phytol ; 230(2): 774-792, 2021 04.
Article in English | MEDLINE | ID: mdl-33355923

ABSTRACT

While there has been significant progress characterizing the 'symbiotic toolkit' of ectomycorrhizal (ECM) fungi, how host specificity may be encoded into ECM fungal genomes remains poorly understood. We conducted a comparative genomic analysis of ECM fungal host specialists and generalists, focusing on the specialist genus Suillus. Global analyses of genome dynamics across 46 species were assessed, along with targeted analyses of three classes of molecules previously identified as important determinants of host specificity: small secreted proteins (SSPs), secondary metabolites (SMs) and G-protein coupled receptors (GPCRs). Relative to other ECM fungi, including other host specialists, Suillus had highly dynamic genomes including numerous rapidly evolving gene families and many domain expansions and contractions. Targeted analyses supported a role for SMs but not SSPs or GPCRs in Suillus host specificity. Phylogenomic-based ancestral state reconstruction identified Larix as the ancestral host of Suillus, with multiple independent switches between white and red pine hosts. These results suggest that like other defining characteristics of the ECM lifestyle, host specificity is a dynamic process at the genome level. In the case of Suillus, both SMs and pathways involved in the deactivation of reactive oxygen species appear to be strongly associated with enhanced host specificity.


Subject(s)
Mycorrhizae , Pinus , Evolution, Molecular , Fungi/genetics , Genome, Fungal , Genomics , Mycorrhizae/genetics , Specialization
18.
Nat Commun ; 11(1): 5125, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33046698

ABSTRACT

Mycorrhizal fungi are mutualists that play crucial roles in nutrient acquisition in terrestrial ecosystems. Mycorrhizal symbioses arose repeatedly across multiple lineages of Mucoromycotina, Ascomycota, and Basidiomycota. Considerable variation exists in the capacity of mycorrhizal fungi to acquire carbon from soil organic matter. Here, we present a combined analysis of 135 fungal genomes from 73 saprotrophic, endophytic and pathogenic species, and 62 mycorrhizal species, including 29 new mycorrhizal genomes. This study samples ecologically dominant fungal guilds for which there were previously no symbiotic genomes available, including ectomycorrhizal Russulales, Thelephorales and Cantharellales. Our analyses show that transitions from saprotrophy to symbiosis involve (1) widespread losses of degrading enzymes acting on lignin and cellulose, (2) co-option of genes present in saprotrophic ancestors to fulfill new symbiotic functions, (3) diversification of novel, lineage-specific symbiosis-induced genes, (4) proliferation of transposable elements and (5) divergent genetic innovations underlying the convergent origins of the ectomycorrhizal guild.


Subject(s)
Fungi/genetics , Genome, Fungal , Mycorrhizae/genetics , Symbiosis , Ecosystem , Evolution, Molecular , Fungal Proteins/genetics , Fungi/classification , Fungi/physiology , Mycorrhizae/classification , Mycorrhizae/physiology , Phylogeny , Plant Physiological Phenomena , Plants/microbiology
19.
Mol Ecol ; 29(21): 4157-4169, 2020 11.
Article in English | MEDLINE | ID: mdl-32866320

ABSTRACT

Human-altered environments can shape the evolution of organisms. Fungi are no exception, although little is known about how they withstand anthropogenic pollution. Here, we document adaptation in the mycorrhizal fungus Suillus luteus driven by soil heavy metal contamination. Genome scans across individuals from recently polluted and nearby unpolluted soils in Belgium revealed low divergence across isolates and no evidence of population structure based on soil type. However, we detected single nucleotide polymorphism divergence and gene copy-number variation, with different genetic combinations potentially conferring the ability to persist in contaminated soils. Variants were shared across the population but found to be under selection in isolates exposed to pollution and located across the genome, including in genes involved in metal exclusion, storage, immobilization and reactive oxygen species detoxification. Together, our results point to S. luteus undergoing the initial steps of adaptive divergence and contribute to understanding the processes underlying local adaptation under strong environmental selection.


Subject(s)
Metals, Heavy , Mycorrhizae , Soil Pollutants , Basidiomycota , Belgium , Humans , Polymorphism, Single Nucleotide/genetics
20.
Phytopathology ; 110(9): 1507-1510, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32338196

ABSTRACT

Blumeriella jaapii is the causal agent of cherry leaf spot (CLS), the most important disease of tart cherry in the Midwestern United States. Infection of leaves by B. jaapii leads to premature defoliation, which places trees at heightened risk of winter injury and death. Current management of CLS relies primarily on the application of three important fungicide classes, quinone outside inhibitors, sterol demethylation inhibitors, and succinate dehydrogenase inhibitors. Here, we present the first high-quality genome of B. jaapii through a hybrid assembly of PacBio long reads and Illumina short reads. The assembled draft genome of B. jaapii is 47.4 Mb and consists of 95 contigs with a N50 value of 1.5 Mb. The genomic information of B. jaapii, representing the most complete sequenced genome of the family Dermateaceae (Ascomycota) to date, provides a valuable resource for identifying fungicide resistance mechanisms of this pathogen and expands our knowledge of the phytopathogenic fungi in this family.


Subject(s)
Ascomycota , Fungicides, Industrial , Prunus avium , Midwestern United States , Plant Diseases
SELECTION OF CITATIONS
SEARCH DETAIL
...