Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Microanal ; 25(4): 1004-1016, 2019 08.
Article in English | MEDLINE | ID: mdl-31106722

ABSTRACT

The process of autophagy has been detected in the midgut epithelium of four millipede species: Julus scandinavius, Polyxenus lagurus, Archispirostreptus gigas, and Telodeinopus aoutii. It has been examined using transmission electron microscopy (TEM), which enabled differentiation of cells in the midgut epithelium, and some histochemical methods (light microscope and fluorescence microscope). While autophagy appeared in the cytoplasm of digestive, secretory, and regenerative cells in J. scandinavius and A. gigas, in the two other species, T. aoutii and P. lagurus, it was only detected in the digestive cells. Both types of macroautophagy, the selective and nonselective processes, are described using TEM. Phagophore formation appeared as the first step of autophagy. After its blind ends fusion, the autophagosomes were formed. The autophagosomes fused with lysosomes and were transformed into autolysosomes. As the final step of autophagy, the residual bodies were detected. Autophagic structures can be removed from the midgut epithelium via, e.g., atypical exocytosis. Additionally, in P. lagurus and J. scandinavius, it was observed as the neutralization of pathogens such as Rickettsia-like microorganisms. Autophagy and apoptosis ca be analyzed using TEM, while specific histochemical methods may confirm it.


Subject(s)
Apoptosis , Arthropods , Autophagy , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Animals , Lysosomes/ultrastructure , Microscopy , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Phagosomes/ultrastructure , Rickettsia/immunology
2.
Neotrop Entomol ; 46(1): 45-57, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27553718

ABSTRACT

Cimicidae are temporary ectoparasites, which means that they cannot obtain food continuously. Both Cimex species examined here, Cimex lectularius (Linnaeus 1758) and Cimex pipistrelli (Jenyns 1839), can feed on a non-natal host, C. lectularius from humans on bats, C. pipistrelli on humans, but never naturally. The midgut of C. lectularius and C. pipistrelli is composed of three distinct regions-the anterior midgut (AMG), which has a sack-like shape, the long tube-shaped middle midgut (MMG), and the posterior midgut (PMG). The different ultrastructures of the AMG, MMG, and PMG in both of the species examined suggest that these regions must fulfill different functions in the digestive system. Ultrastructural analysis showed that the AMG fulfills the role of storing food and synthesizing and secreting enzymes, while the MMG is the main organ for the synthesis of enzymes, secretion, and the storage of the reserve material. Additionally, both regions, the AMG and MMG, are involved in water absorption in the digestive system of both Cimex species. The PMG is the part of the midgut in which spherites accumulate. The results of our studies confirm the suggestion of former authors that the structure of the digestive tract of insects is not attributed solely to diet but to the basic adaptation of an ancestor.


Subject(s)
Bedbugs/anatomy & histology , Digestive System/anatomy & histology , Feeding Behavior , Animals , Chiroptera , Diet , Humans
3.
Protoplasma ; 253(4): 1051-61, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26277351

ABSTRACT

Three types of cells have been distinguished in the midgut epithelium of two centipedes, Lithobius forficatus and Scolopendra cingulata: digestive, secretory, and regenerative cells. According to the results of our previous studies, we decided to analyze the relationship between apoptosis and necrosis in their midgut epithelium and circadian rhythms. Ultrastructural analysis showed that these processes proceed in a continuous manner that is independent of the circadian rhythm in L. forficatus, while in S. cingulata necrosis is activated at midnight. Additionally, the description of apoptosis and necrosis showed no differences between males and females of both species analyzed. At the beginning of apoptosis, the cell cytoplasm becomes electron-dense, apparently in response to shrinkage of the cell. Organelles such as the mitochondria, cisterns of endoplasmic reticulum transform and degenerate. Nuclei gradually assume lobular shapes before the apoptotic cell is discharged into the midgut lumen. During necrosis, however, the cytoplasm of the cell becomes electron-lucent, and the number of organelles decreases. While the digestive cells of about 10 % of L. forficatus contain rickettsia-like pathogens, the corresponding cells in S. cingulata are free of rickettsia. As a result, we can state that apoptosis in L. forficatus is presumably responsible for protecting the organism against infections, while in S. cingulata apoptosis is not associated with the elimination of pathogens. Necrosis is attributed to mechanical damage, and the activation of this process coincides with proliferation of the midgut regenerative cells at midnight in S. cingulata.


Subject(s)
Apoptosis , Arthropods/cytology , Necrosis , Animals , Arthropods/microbiology , Circadian Rhythm , DNA Fragmentation , Digestive System/cytology , Digestive System/microbiology , Epithelial Cells/microbiology , Epithelial Cells/physiology , Epithelial Cells/ultrastructure , Female , Male
4.
Micron ; 68: 130-139, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25464151

ABSTRACT

The midgut epithelium of two centipedes, Lithobius forficatus and Scolopendra cingulata, is composed of digestive, secretory and regenerative cells. In L. forficatus, the autophagy occurred only in the cytoplasm of the digestive cells as a sporadic process, while in S. cingulata, it occurred intensively in the digestive, secretory and regenerative cells of the midgut epithelium. In both of the species that were analyzed, this process proceeded in a continuous manner and did not depend on the day/night cycle. Ultrastructural analysis showed that the autophagosomes and autolysosomes were located mainly in the apical and perinuclear cytoplasm of the digestive cells in L. forficatus. However, in S. cingulata, the entire cytoplasm was filled with autophagosomes and autolysosomes. Initially the membranes of phagophores surround organelles during autophagosome formation. Autolysosomes result from the fusion of autophagosomes and lysosomes. Residual bodies which are the last stage of autophagy were released into the midgut lumen due to necrosis. Autophagy in the midgut epithelia that were analyzed was confirmed using acid phosphatase and mono-dansyl-cadaverine stainings.


Subject(s)
Arthropods/physiology , Autophagy , Circadian Rhythm , Epithelial Cells/physiology , Photoperiod , Animals , Arthropods/cytology , Cytoplasm/ultrastructure , Epithelial Cells/ultrastructure , Gastrointestinal Tract/physiology , Intestinal Mucosa/physiology , Lysosomes/ultrastructure , Microscopy, Electron, Transmission , Phagosomes/ultrastructure
5.
Arthropod Struct Dev ; 43(5): 477-92, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25038427

ABSTRACT

The midgut epithelia of the millipedes Polyxenus lagurus, Archispirostreptus gigas and Julus scandinavius were analyzed under light and transmission electron microscopies. In order to detect the proliferation of regenerative cells, labeling with BrdU and antibodies against phosphohistone H3 were employed. A tube-shaped midgut of three millipedes examined spreads along the entire length of the middle region of the body. The epithelium is composed of digestive, secretory and regenerative cells. The digestive cells are responsible for the accumulation of metals and the reserve material as well as the synthesis of substances, which are then secreted into the midgut lumen. The secretions are of three types - merocrine, apocrine and microapocrine. The oval or pear-like shaped secretory cells do not come into contact with the midgut lumen and represent the closed type of secretory cells. They possess many electron-dense granules (J. scandinavius) or electron-dense granules and electron-lucent vesicles (A. gigas, P. lagurus), which are accompanied by cisterns of the rough endoplasmic reticulum. The regenerative cells are distributed individually among the basal regions of the digestive cells. The proliferation and differentiation of regenerative cells into the digestive cells occurred in J. scandinavius and A. gigas, while these processes were not observed in P. lagurus. As a result of the mitotic division of regenerative cells, one of the newly formed cells fulfills the role of a regenerative cell, while the second one differentiates into a digestive cell. We concluded that regenerative cells play the role of unipotent midgut stem cells.


Subject(s)
Arthropods/physiology , Arthropods/ultrastructure , Animals , Czech Republic , Digestive System/metabolism , Digestive System/ultrastructure , Epithelium/metabolism , Epithelium/ultrastructure , Stem Cells/physiology , Stem Cells/ultrastructure
6.
Arthropod Struct Dev ; 41(3): 271-9, 2012 May.
Article in English | MEDLINE | ID: mdl-22445350

ABSTRACT

Eubranchipus grubii (Crustacea, Branchiopoda, Anostraca) is an omnivorous filter feeder whose life span lasts no more than 12 weeks. Adult males and females of E. grubii were used for ultrastructural studies of the midgut epithelium and an analysis of autophagy. The midgut epithelium is formed by columnar digestive cells and no regenerative cells were observed. A distinct regionalization in the distribution of organelles appears - basal, perinuclear and apical regions were distinguished. No differences in the ultrastructure of digestive cells were observed between males and females. Autophagic disintegration of organelles occurs throughout the midgut epithelium. Degenerated organelles accumulate in the neighborhood of Golgi complexes, and these complexes presumably take part in phagophore and autophagosome formation. In some cases, the phagophore also surrounds small autophagosomes, which had appeared earlier. Fusion of autophagosomes and lysosomes was not observed, but lysosomes are enclosed during autophagosome formation. Autophagosomes and autolysosomes are discharged into the midgut lumen due to apocrine secretion. Autophagy plays a role in cell survival by protecting the cell from cell death.


Subject(s)
Anostraca/physiology , Animals , Anostraca/ultrastructure , Autophagy , Czech Republic , Epithelium/physiopathology , Epithelium/ultrastructure , Female , Gastrointestinal Tract/physiology , Gastrointestinal Tract/ultrastructure , Male , Microscopy, Electron, Transmission , Phagosomes/ultrastructure
7.
Bull Entomol Res ; 102(1): 29-42, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21736854

ABSTRACT

Elasmucha ferrugata (Fabricius, 1787) (Heteroptera: Acanthosomatidae) provides maternal care of eggs and larvae. Adults of both sexes have functional anterior dorsal abdominal scent glands (DAGs). Study of all internal and external cuticular structures of DAGs revealed that no DAGs are fully functional in the 1st larval instar, and very probably they are only slightly functional in the 2nd instar. Median and posterior DAGs are undoubtedly not functional in adults. There exists sexual dimorphism in the number of multicellular glandular units in anterior glands in adults. The occurrence of cuticular ductules of these units proves these to be functional glands. This is best considered in combination with the findings of a well-developed evaporatorium. Developed cuticular intima of the gland reservoir and/or the nearly closed ostiole or ostiolar scar bears no information about the functionality of the gland.


Subject(s)
Heteroptera/anatomy & histology , Animals , Czech Republic , Female , Heteroptera/growth & development , Heteroptera/ultrastructure , Larva/anatomy & histology , Larva/growth & development , Larva/ultrastructure , Male , Microscopy, Electron, Scanning , Scent Glands/anatomy & histology , Scent Glands/growth & development , Scent Glands/ultrastructure , Sex Characteristics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...