Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(17): e2321989121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38625941

ABSTRACT

Type IVa pili (T4aP) are ubiquitous cell surface filaments important for surface motility, adhesion to surfaces, DNA uptake, biofilm formation, and virulence. T4aP are built from thousands of copies of the major pilin subunit and tipped by a complex composed of minor pilins and in some systems also the PilY1 adhesin. While major pilins of structurally characterized T4aP have lengths of <165 residues, the major pilin PilA of Myxococcus xanthus is unusually large with 208 residues. All major pilins have a conserved N-terminal domain and a variable C-terminal domain, and the additional residues of PilA are due to a larger C-terminal domain. We solved the structure of the M. xanthus T4aP (T4aPMx) at a resolution of 3.0 Å using cryo-EM. The T4aPMx follows the structural blueprint of other T4aP with the pilus core comprised of the interacting N-terminal α1-helices, while the globular domains decorate the T4aP surface. The atomic model of PilA built into this map shows that the large C-terminal domain has more extensive intersubunit contacts than major pilins in other T4aP. As expected from these greater contacts, the bending and axial stiffness of the T4aPMx is significantly higher than that of other T4aP and supports T4aP-dependent motility on surfaces of different stiffnesses. Notably, T4aPMx variants with interrupted intersubunit interfaces had decreased bending stiffness, pilus length, and strongly reduced motility. These observations support an evolutionary scenario whereby the large major pilin enables the formation of a rigid T4aP that expands the environmental conditions in which the T4aP system functions.


Subject(s)
Fimbriae Proteins , Myxococcus xanthus , Fimbriae Proteins/metabolism , Myxococcus xanthus/genetics , Myxococcus xanthus/metabolism , Fimbriae, Bacterial/metabolism , Protein Structure, Secondary , Virulence
2.
Cell ; 186(23): 4994-4995, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37949055

ABSTRACT

Mechanobiology explores how cells sense and respond to mechanical cues and how mechanics guide cell function, physiology, and disease. In this issue of Cell, Thacker and colleagues reveal how the tuberculosis-causing pathogen exploits the mechanical behavior of cord-like structures to promote infection, impacting immune response, antibiotic susceptibility, and treatment strategies.


Subject(s)
Biomechanical Phenomena , Mycobacterium tuberculosis , Humans , Biophysics , Tuberculosis/microbiology , Mycobacterium tuberculosis/physiology
3.
bioRxiv ; 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37503255

ABSTRACT

Type IV pili (T4P) are ubiquitous bacterial cell surface filaments important for surface motility, adhesion to biotic and abiotic surfaces, DNA uptake, biofilm formation, and virulence. T4P are built from thousands of copies of the major pilin subunit and tipped by a complex composed of minor pilins and in some systems also the PilY1 adhesin. While the major pilins of structurally characterized T4P have lengths of up to 161 residues, the major pilin PilA of Myxococcus xanthus is unusually large with 208 residues. All major pilins have a highly conserved N-terminal domain and a highly variable C-terminal domain, and the additional residues in the M. xanthus PilA are due to a larger C-terminal domain. We solved the structure of the M. xanthus T4P (T4P Mx ) at a resolution of 3.0 Å using cryo-electron microscopy (cryo-EM). The T4P Mx follows the structural blueprint observed in other T4P with the pilus core comprised of the extensively interacting N-terminal α1-helices while the globular domains decorate the T4P surface. The atomic model of PilA built into this map shows that the large C-terminal domain has much more extensive intersubunit contacts than major pilins in other T4P. As expected from these greater contacts, the bending and axial stiffness of the T4P Mx is significantly higher than that of other T4P and supports T4P-dependent motility on surfaces of different stiffnesses. Notably, T4P Mx variants with interrupted intersubunit interfaces had decreased bending stiffness and strongly reduced motility on all surfaces. These observations support an evolutionary scenario whereby the large major pilin enables the formation of a rigid T4P that expands the environmental conditions in which the T4P system functions.

4.
Sci Adv ; 9(20): eadf9498, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37205764

ABSTRACT

The bacterial pathogen Mycobacterium tuberculosis binds to the C-type lectin DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin) on dendritic cells to evade the immune system. While DC-SIGN glycoconjugate ligands are ubiquitous among mycobacterial species, the receptor selectively binds pathogenic species from the M. tuberculosis complex (MTBC). Here, we unravel the molecular mechanism behind this intriguing selective recognition by means of a multidisciplinary approach combining single-molecule atomic force microscopy with Förster resonance energy transfer and bioassays. Molecular recognition imaging of mycobacteria demonstrates that the distribution of DC-SIGN ligands markedly differs between Mycobacterium bovis Bacille Calmette-Guérin (BCG) (model MTBC species) and Mycobacterium smegmatis (non-MTBC species), the ligands being concentrated into dense nanodomains on M. bovis BCG. Upon bacteria-host cell adhesion, ligand nanodomains induce the recruitment and clustering of DC-SIGN. Our study highlights the key role of clustering of both ligands on MTBC species and DC-SIGN host receptors in pathogen recognition, a mechanism that might be widespread in host-pathogen interactions.


Subject(s)
Mycobacterium tuberculosis , Receptors, Cell Surface , Ligands , Receptors, Cell Surface/metabolism , Lectins, C-Type/metabolism , Mycobacterium tuberculosis/metabolism
5.
ACS Nanosci Au ; 3(1): 58-66, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36820093

ABSTRACT

Attachment of Staphylococcus aureus to human skin corneocyte cells plays a critical role in exacerbating the severity of atopic dermatitis (AD). Pathogen-skin adhesion is mediated by bacterial cell-surface proteins called adhesins, including fibronectin-binding protein B (FnBPB). FnBPB binds to corneodesmosin (CDSN), a glycoprotein exposed on AD patient corneocytes. Using single-molecule experiments, we demonstrate that CDSN binding by FnBPB relies on a sophisticated two-site mechanism. Both sites form extremely strong bonds with binding forces of ∼1 and ∼2.5 nN albeit with faster dissociation rates than those reported for homologues of the adhesin. This previously unidentified two-binding site interaction in FnBPB illustrates its remarkable variety of adhesive functions and is of biological significance as the high strength and short bond lifetime will favor efficient skin colonization by the pathogen.

7.
Nat Commun ; 13(1): 2517, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35523796

ABSTRACT

Colonisation of humans by Staphylococcus aureus is a major risk factor for infection, yet the bacterial and host factors involved are not fully understood. The first step during skin colonisation is adhesion of the bacteria to corneocytes in the stratum corneum where the cornified envelope protein loricrin is the main ligand for S. aureus. Here we report a novel loricrin-binding protein of S. aureus, the cell wall-anchored fibronectin binding protein B (FnBPB). Single-molecule force spectroscopy revealed both weak and ultra-strong (2 nN) binding of FnBPB to loricrin and that mechanical stress enhanced the strength of these bonds. Treatment with a peptide derived from fibrinogen decreased the frequency of strong interactions, suggesting that both ligands bind to overlapping sites within FnBPB. Finally, we show that FnBPB promotes adhesion to human corneocytes by binding strongly to loricrin, highlighting the relevance of this interaction to skin colonisation.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Adhesins, Bacterial/chemistry , Bacterial Adhesion , Fibronectins/metabolism , Humans , Membrane Proteins , Protein Binding , Staphylococcal Infections/microbiology , Staphylococcus aureus/metabolism
8.
Structure ; 30(3): 321-323, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35245432

ABSTRACT

In this issue of Structure, Ritzmann et al. characterize the unfolding of the ß-barrel assembly machinery component BamA with single-molecule force spectroscopy and reveal how an antibiotic changes BamA's mechanical properties and inhibits its activity. This work helps us understand the effects antibiotics have on Gram-negative outer membrane proteins.


Subject(s)
Escherichia coli Proteins , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/chemistry , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Phenylpropionates
9.
Microorganisms ; 10(2)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35208908

ABSTRACT

Adhesion is crucial for the infective lifestyles of bacterial pathogens. Adhesion to non-living surfaces, other microbial cells, and components of the biofilm extracellular matrix are crucial for biofilm formation and integrity, plus adherence to host factors constitutes a first step leading to an infection. Adhesion is, therefore, at the core of pathogens' ability to contaminate, transmit, establish residency within a host, and cause an infection. Several mycobacterial species cause diseases in humans and animals with diverse clinical manifestations. Mycobacterium tuberculosis, which enters through the respiratory tract, first adheres to alveolar macrophages and epithelial cells leading up to transmigration across the alveolar epithelium and containment within granulomas. Later, when dissemination occurs, the bacilli need to adhere to extracellular matrix components to infect extrapulmonary sites. Mycobacteria causing zoonotic infections and emerging nontuberculous mycobacterial pathogens follow divergent routes of infection that probably require adapted adhesion mechanisms. New evidence also points to the occurrence of mycobacterial biofilms during infection, emphasizing a need to better understand the adhesive factors required for their formation. Herein, we review the literature on tuberculous and nontuberculous mycobacterial adhesion to living and non-living surfaces, to themselves, to host cells, and to components of the extracellular matrix.

10.
Int J Mol Sci ; 23(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35163034

ABSTRACT

It is an understatement that mating and DNA transfer are key events for living organisms. Among the traits needed to facilitate mating, cell adhesion between gametes is a universal requirement. Thus, there should be specific properties for the adhesion proteins involved in mating. Biochemical and biophysical studies have revealed structural information about mating adhesins, as well as their specificities and affinities, leading to some ideas about these specialized adhesion proteins. Recently, single-cell force spectroscopy (SCFS) has added important findings. In SCFS, mating cells are brought into contact in an atomic force microscope (AFM), and the adhesive forces are monitored through the course of mating. The results have shown some remarkable characteristics of mating adhesins and add knowledge about the design and evolution of mating adhesins.


Subject(s)
Cell Adhesion , Cell Communication , Microscopy, Atomic Force/methods , Single-Cell Analysis/methods , Animals , Humans
11.
PNAS Nexus ; 1(5): pgac278, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36712378

ABSTRACT

The accumulation phase of staphylococcal biofilms relies on both the production of an extracellular polysaccharide matrix and the expression of bacterial surface proteins. A prototypical example of such adhesive proteins is the long multidomain protein Aap (accumulation-associated protein) from Staphylococcus epidermidis, which mediates zinc-dependent homophilic interactions between Aap B-repeat regions through molecular forces that have not been investigated yet. Here, we unravel the remarkable mechanical strength of single Aap-Aap homophilic bonds between living bacteria and we demonstrate that intercellular adhesion also involves sugar binding through the lectin domain of the Aap A region. We find that the mechanical force needed to unfold individual ß-sheet-rich G5-E domains from the Aap B-repeat regions is very high, ranging from 300 up to 1,000 pN at high loading rates, indicating these are extremely stable. This high mechanostability provides a means to the cells to form highly adhesive and cohesive biofilms capable of sustaining high physiological shear stress. Importantly, we identify a previously undescribed role of Aap in bacterial-bacterial adhesion, that is, heterophilic sugar binding by a specific lectin domain located in the N-terminal A region, which might be important to establish initial contacts between cells before strong homophilic bonds come into play. This study emphasizes the remarkable mechanical and binding properties of Aap as well as its wide diversity of adhesive functions.

12.
Cell Surf ; 7: 100060, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34485766

ABSTRACT

Four serine/threonine kinases are present in all mycobacteria: PknA, PknB, PknG and PknL. PknA and PknB are essential for growth and replication, PknG regulates metabolism, but little is known about PknL. Inactivation of pknL and adjacent regulator MSMEG_4242 in rough colony M. smegmatis mc2155 produced both smooth and rough colonies. Upon restreaking rough colonies, smooth colonies appeared at a frequency of ~ 1/250. Smooth mutants did not form biofilms, showed increased sliding motility and anomalous lipids on thin-layer chromatography, identified by mass spectrometry as lipooligosaccharides and perhaps also glycopeptidolipids. RNA-seq and Sanger sequencing revealed that all smooth mutants had inactivated lsr2 genes due to mutations and different IS1096 insertions. When complemented with lsr2, the colonies became rough, anomalous lipids disappeared and sliding motility decreased. Smooth mutants showed increased expression of IS1096 transposase TnpA and MSMEG_4727, which encodes a protein similar to PKS5. When MSMEG_4727 was deleted, smooth pknL/MSMEG_4242/lsr2 mutants reverted to rough, formed good biofilms, their motility decreased slightly and their anomalous lipids disappeared. Rough delpknL/del4242 mutants formed poor biofilms and showed decreased, aberrant sliding motility and both phenotypes were complemented with the two deleted genes. Inactivation of lsr2 changes colony morphology from rough to smooth, augments sliding motility and increases expression of MSMEG_4727 and other enzymes synthesizing lipooligosaccharides, apparently preventing biofilm formation. Similar morphological phase changes occur in other mycobacteria, likely reflecting environmental adaptations. PknL and MSMEG_4242 regulate lipid components of the outer cell envelope and their absence selects for lsr2 inactivation. A regulatory, phosphorylation cascade model is proposed.

13.
Pathogens ; 10(8)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34451476

ABSTRACT

Amyloid structures assemble through a repeating type of bonding called "cross-ß", in which identical sequences in many protein molecules form ß-sheets that interdigitate through side chain interactions. We review the structural characteristics of such bonds. Single cell force microscopy (SCFM) shows that yeast expressing Als5 adhesin from Candida albicans demonstrate the empirical characteristics of cross-ß interactions. These properties include affinity for amyloid-binding dyes, birefringence, critical concentration dependence, repeating structure, and inhibition by anti-amyloid agents. We present a model for how cross-ß bonds form in trans between two adhering cells. These characteristics also apply to other fungal adhesins, so the mechanism appears to be an example of a new type of cell-cell adhesion.

14.
Bioorg Med Chem ; 43: 116248, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34274760

ABSTRACT

This study focuses on the synthesis of 1,7- and 3,4-indole-fused lactones via a simple and efficient reaction sequence. The functionalization of these "oxazepino-indole" and "oxepino-indole" tricycles is carried out by palladium catalysed CC coupling, nucleophilic substitution or 1,3-dipolar cycloaddition. The evaluation of their activity against Mycobacterium tuberculosis shows that the "oxazepino-indole" structure is a new inhibitor of M. tuberculosis growth in vitro.


Subject(s)
Anti-Bacterial Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
15.
Nanoscale Horiz ; 6(6): 489-496, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33982737

ABSTRACT

Motorization of bacterial pili is key to generate traction forces to achieve cellular function. The Tad (or Type IVc) pilus from Caulobacter crescentus is a widespread motorized nanomachine crucial for bacterial survival, evolution and virulence. An unusual bifunctional ATPase motor drives Tad pilus retraction, which helps the bacteria to land on target surfaces. Here, we use a novel platform combining a fluorescence-based screening of piliated bacteria and atomic force microscopy (AFM) force-clamp spectroscopy, to monitor over time (30 s) the nanomechanics and dynamics of the Tad nanofilament retraction under a high constant tension (300 pN). We observe striking transient variations of force and height originating from two phenomena: active pilus retraction and passive hydrophobic interactions between the pilus and the hydrophobic substrate. That the Tad pilus is able to retract under high tensile loading - at a velocity of ∼150 nm s-1 - indicates that this nanomachine is stronger than previously anticipated. Our findings show that pilus retraction and hydrophobic interactions work together to mediate bacterial cell landing and surface adhesion. The motorized pilus retraction actively triggers the cell to approach the substrate. At short distances, passive hydrophobic interactions accelerate the approach phenomenon and promote strong cell-substrate adhesion. This mechanism could provide a strategy to save ATP-based energy by the retraction ATPase. Our force-clamp AFM methodology offers promise to decipher the physics of bacterial nanomotors with high sensitivity and temporal resolution.


Subject(s)
Caulobacter crescentus , Fimbriae, Bacterial , Adenosine Triphosphatases , Microscopy, Atomic Force , Spectrum Analysis
16.
Commun Biol ; 4(1): 453, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33846500

ABSTRACT

The Staphylococcus aureus cell wall-anchored adhesin ClfA binds to the very large blood circulating protein, von Willebrand factor (vWF) via vWF-binding protein (vWbp), a secreted protein that does not bind the cell wall covalently. Here we perform force spectroscopy studies on living bacteria to unravel the molecular mechanism of this interaction. We discover that the presence of all three binding partners leads to very high binding forces (2000 pN), largely outperforming other known ternary complexes involving adhesins. Strikingly, our experiments indicate that a direct interaction involving features of the dock, lock and latch mechanism must occur between ClfA and vWF to sustain the extreme tensile strength of the ternary complex. Our results support a previously undescribed mechanism whereby vWbp activates a direct, ultra-strong interaction between ClfA and vWF. This intriguing interaction represents a potential target for therapeutic interventions, including synthetic peptides inhibiting the ultra-strong interactions between ClfA and its ligands.


Subject(s)
Bacterial Adhesion , Carrier Proteins/metabolism , Coagulase/metabolism , Staphylococcus aureus/physiology , von Willebrand Factor/metabolism , Spectrum Analysis
17.
Cell Microbiol ; 23(7): e13324, 2021 07.
Article in English | MEDLINE | ID: mdl-33710716

ABSTRACT

The unique capabilities of the atomic force microscope (AFM), including super-resolution imaging, piconewton force-sensitivity, nanomanipulation and ability to work under physiological conditions, have offered exciting avenues for cellular and molecular biology research. AFM imaging has helped unravel the fine architectures of microbial cell envelopes at the nanoscale, and how these are altered by antimicrobial treatment. Nanomechanical measurements have shed new light on the elasticity, tensile strength and turgor pressure of single cells. Single-molecule and single-cell force spectroscopy experiments have revealed the forces and dynamics of receptor-ligand interactions, the nanoscale distribution of receptors on the cell surface and the elasticity and adhesiveness of bacterial pili. Importantly, recent force spectroscopy studies have demonstrated that extremely stable bonds are formed between bacterial adhesins and their cognate ligands, originating from a catch bond behaviour allowing the pathogen to reinforce adhesion under shear or tensile stress. Here, we survey how the versatility of AFM has enabled addressing crucial questions in microbiology, with emphasis on bacterial pathogens. TAKE AWAYS: AFM topographic imaging unravels the ultrastructure of bacterial envelopes. Nanomechanical mapping shows what makes cell envelopes stiff and resistant to drugs. Force spectroscopy characterises the molecular forces in pathogen adhesion. Stretching pili reveals a wealth of mechanical and adhesive responses.


Subject(s)
Bacteria/ultrastructure , Bacterial Proteins/ultrastructure , Cellular Structures/ultrastructure , Microscopy, Atomic Force/methods , Single-Cell Analysis/methods
18.
Nano Lett ; 21(7): 3075-3082, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33754731

ABSTRACT

Bacterial pili are proteinaceous motorized nanomachines that play various functional roles including surface adherence, bacterial motion, and virulence. The surface-contact sensor type IVc (or Tad) pilus is widely distributed in both Gram-positive and Gram-negative bacteria. In Caulobacter crescentus, this nanofilament, though crucial for surface colonization, has never been thoroughly investigated at the molecular level. As Caulobacter assembles several surface appendages at specific stages of the cell cycle, we designed a fluorescence-based screen to selectively study single piliated cells and combined it with atomic force microscopy and genetic manipulation to quantify the nanoscale adhesion of the type IVc pilus to hydrophobic substrates. We demonstrate that this nanofilament exhibits high stickiness compared to the canonical type IVa/b pili, resulting mostly from multiple hydrophobic interactions along the fiber length, and that it features nanospring mechanical properties. Our findings may be helpful to better understand the structure-function relationship of bacterial pilus nanomachines.


Subject(s)
Caulobacter , Fimbriae, Bacterial , Anti-Bacterial Agents , Bacterial Adhesion , Fimbriae, Bacterial/genetics , Gram-Negative Bacteria , Gram-Positive Bacteria
19.
J Bacteriol ; 203(10)2021 04 21.
Article in English | MEDLINE | ID: mdl-33468595

ABSTRACT

Mycobacteria have unique cell envelopes, surface properties, and growth dynamics, which all play a part in the ability of these important pathogens to infect, evade host immunity, disseminate, and resist antibiotic challenges. Recent atomic force microscopy (AFM) studies have brought new insights into the nanometer-scale ultrastructural, adhesive, and mechanical properties of mycobacteria. The molecular forces with which mycobacterial adhesins bind to host factors, like heparin and fibronectin, and the hydrophobic properties of the mycomembrane have been unraveled by AFM force spectroscopy studies. Real-time correlative AFM and fluorescence imaging have delineated a complex interplay between surface ultrastructure, tensile stresses within the cell envelope, and cellular processes leading to division. The unique capabilities of AFM, which include subdiffraction-limit topographic imaging and piconewton force sensitivity, have great potential to resolve important questions that remain unanswered on the molecular interactions, surface properties, and growth dynamics of this important class of pathogens.


Subject(s)
Cell Membrane/ultrastructure , Mycobacterium/ultrastructure , Adhesins, Bacterial/metabolism , Anti-Bacterial Agents/pharmacology , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Membrane/physiology , Hydrophobic and Hydrophilic Interactions , Membrane Lipids/chemistry , Membrane Lipids/physiology , Microscopy, Atomic Force , Mycobacterium/chemistry , Mycobacterium/growth & development , Mycobacterium/physiology , Surface Properties
20.
mBio ; 13(1): e0375421, 2021 02 22.
Article in English | MEDLINE | ID: mdl-35100866

ABSTRACT

During biofilm formation, the opportunistic pathogen Pseudomonas aeruginosa uses its type IV pili (TFP) to sense a surface, eliciting increased second-messenger production and regulating target pathways required to adapt to a surface lifestyle. The mechanisms whereby TFP detect surface contact are still poorly understood, although mechanosensing is often invoked, with few data supporting this claim. Using a combination of molecular genetics and single-cell analysis, with biophysical, biochemical, and genomics techniques, we show that force-induced changes mediated by the von Willebrand A (vWA) domain-containing, TFP tip-associated protein PilY1 are required for surface sensing. Atomic force microscopy shows that TFP/PilY1 can undergo force-induced, sustained conformational changes akin to those observed for mechanosensitive proteins like titin. We show that mutation of a single cysteine residue in the vWA domain of PilY1 results in modestly lower surface adhesion forces, reduced sustained conformational changes, and increased nanospring-like properties, as well as reduced c-di-GMP signaling and biofilm formation. Mutating this cysteine has allowed us to genetically separate a role for TFP in twitching motility from surface-sensing signaling. The conservation of this Cys residue in all P. aeruginosa PA14 strains and its absence in the ∼720 sequenced strains of P. aeruginosa PAO1 may contribute to explaining the observed differences in surface colonization strategies observed for PA14 versus PAO1. IMPORTANCE Most bacteria live on abiotic and biotic surfaces in surface-attached communities known as biofilms. Surface sensing and increased levels of the second-messenger molecule c-di-GMP are crucial to the transition from planktonic to biofilm growth. The mechanism(s) underlying TFP-mediated surface detection that triggers this c-di-GMP signaling cascade is unclear. Here, we provide key insight into this question; we show that the eukaryote-like vWA domain of the TFP tip-associated protein PilY1 responds to mechanical force, which in turn drives the production of a key second messenger needed to regulate surface behaviors. Our studies highlight a potential mechanism that may account for differing surface colonization strategies.


Subject(s)
Bacterial Proteins , Biofilms , Cysteine , Pseudomonas aeruginosa , Bacterial Proteins/metabolism , Cyclic GMP/metabolism , Cysteine/metabolism , Fimbriae Proteins/genetics , Fimbriae, Bacterial/genetics , Gene Expression Regulation, Bacterial , Pseudomonas aeruginosa/genetics , Second Messenger Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...