Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 6(1): 822, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37553518

ABSTRACT

Humans are social creatures, demonstrate prosocial behaviors, and are sensitive to the actions and consequent payoff of others. This social sensitivity has also been found in many other species, though not in all. Research has suggested that prosocial tendencies are more pronounced in naturally cooperative species whose social structure requires a high level of interdependence and allomaternal care. The present study challenges this assumption by demonstrating, in a laboratory setting, that archerfish, competitive by nature, preferred targets rewarding both themselves and their tankmates, but only when the payoff was equal. With no tankmate on the other side of the partition, they exhibited no obvious preference. Finding evidence for prosocial behavior and negative responses to unequal distribution of reward to the advantage of the other fish suggests that in a competitive social environment, being prosocial may be the most adaptive strategy for personal survival, even if it benefits others as well.


Subject(s)
Altruism , Perciformes , Humans , Animals , Reward , Laboratories
2.
Sci Rep ; 11(1): 15664, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34341367

ABSTRACT

We make magnitude-related decisions every day, for example, to choose the shortest queue at the grocery store. When making such decisions, which magnitudes do we consider? The dominant theory suggests that our focus is on numerical quantity, i.e., the number of items in a set. This theory leads to quantity-focused research suggesting that discriminating quantities is automatic, innate, and is the basis for mathematical abilities in humans. Another theory suggests, instead, that non-numerical magnitudes, such as the total area of the compared items, are usually what humans rely on, and numerical quantity is used only when required. Since wild animals must make quick magnitude-related decisions to eat, seek shelter, survive, and procreate, studying which magnitudes animals spontaneously use in magnitude-related decisions is a good way to study the relative primacy of numerical quantity versus non-numerical magnitudes. We asked whether, in an animal model, the influence of non-numerical magnitudes on performance in a spontaneous magnitude comparison task is modulated by the number of non-numerical magnitudes that positively correlate with numerical quantity. Our animal model was the Archerfish, a fish that, in the wild, hunts insects by shooting a jet of water at them. These fish were trained to shoot water at artificial targets presented on a computer screen above the water tank. We tested the Archerfish's performance in spontaneous, untrained two-choice magnitude decisions. We found that the fish tended to select the group containing larger non-numerical magnitudes and smaller quantities of dots. The fish selected the group containing more dots mostly when the quantity of the dots was positively correlated with all five different non-numerical magnitudes. The current study adds to the body of studies providing direct evidence that in some cases animals' magnitude-related decisions are more affected by non-numerical magnitudes than by numerical quantity, putting doubt on the claims that numerical quantity perception is the most basic building block of mathematical abilities.

SELECTION OF CITATIONS
SEARCH DETAIL
...