Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36798424

ABSTRACT

Cell-free protein expression has become a widely used research tool in systems and synthetic biology and a promising technology for protein biomanufacturing. Cell-free protein synthesis relies on in-vitro transcription and translation processes to produce a protein of interest. However, transcription and translation depend upon the operation of complex metabolic pathways for precursor and energy regeneration. Toward understanding the role of metabolism in a cell-free system, we developed a dynamic constraint-based simulation of protein production in the myTXTL E. coli cell-free system with and without electron transport chain inhibitors. Time-resolved absolute metabolite measurements for â"³ = 63 metabolites, along with absolute concentration measurements of the mRNA and protein abundance and measurements of enzyme activity, were integrated with kinetic and enzyme abundance information to simulate the time evolution of metabolic flux and protein production with and without inhibitors. The metabolic flux distribution estimated by the model, along with the experimental metabolite and enzyme activity data, suggested that the myTXTL cell-free system has an active central carbon metabolism with glutamate powering the TCA cycle. Further, the electron transport chain inhibitor studies suggested the presence of oxidative phosphorylation activity in the myTXTL cell-free system; the oxidative phosphorylation inhibitors provided biochemical evidence that myTXTL relied, at least partially, on oxidative phosphorylation to generate the energy required to sustain transcription and translation for a 16-hour batch reaction.

2.
Adv Healthc Mater ; 12(14): e2202224, 2023 06.
Article in English | MEDLINE | ID: mdl-36479976

ABSTRACT

Metastasis is the leading cause of breast cancer-related deaths and is often driven by invasion and cancer-stem like cells (CSCs). Both the CSC phenotype and invasion are associated with increased hyaluronic acid (HA) production. How these independent observations are connected, and which role metabolism plays in this process, remains unclear due to the lack of convergent approaches integrating engineered model systems, computational tools, and cancer biology. Using microfluidic invasion models, metabolomics, computational flux balance analysis, and bioinformatic analysis of patient data, the functional links between the stem-like, invasive, and metabolic phenotype of breast cancer cells as a function of HA biosynthesis are investigated. These results suggest that CSCs are more invasive than non-CSCs and that broad metabolic changes caused by overproduction of HA play a role in this process. Accordingly, overexpression of hyaluronic acid synthases (HAS) 2 or 3 induces a metabolic phenotype that promotes cancer cell stemness and invasion in vitro and upregulates a transcriptomic signature predictive of increased invasion and worse patient survival. This study suggests that HA overproduction leads to metabolic adaptations to satisfy the energy demands for 3D invasion of breast CSCs highlighting the importance of engineered model systems and multidisciplinary approaches in cancer research.


Subject(s)
Hyaluronic Acid , Neoplasms , Humans , Hyaluronic Acid/pharmacology , Neoplasms/pathology , Cell Line, Tumor , Neoplastic Stem Cells/metabolism
3.
Front Bioeng Biotechnol ; 8: 539081, 2020.
Article in English | MEDLINE | ID: mdl-33324619

ABSTRACT

Transcription and translation are at the heart of metabolism and signal transduction. In this study, we developed an effective biophysical modeling approach to simulate transcription and translation processes. The model, composed of coupled ordinary differential equations, was tested by comparing simulations of two cell free synthetic circuits with experimental measurements generated in this study. First, we considered a simple circuit in which sigma factor 70 induced the expression of green fluorescent protein. This relatively simple case was then followed by a more complex negative feedback circuit in which two control genes were coupled to the expression of a third reporter gene, green fluorescent protein. Many of the model parameters were estimated from previous biophysical studies in the literature, while the remaining unknown model parameters for each circuit were estimated by minimizing the difference between model simulations and messenger RNA (mRNA) and protein measurements generated in this study. In particular, either parameter estimates from published studies were used directly, or characteristic values found in the literature were used to establish feasible ranges for the parameter estimation problem. In order to perform a detailed analysis of the influence of individual model parameters on the expression dynamics of each circuit, global sensitivity analysis was used. Taken together, the effective biophysical modeling approach captured the expression dynamics, including the transcription dynamics, for the two synthetic cell free circuits. While, we considered only two circuits here, this approach could potentially be extended to simulate other genetic circuits in both cell free and whole cell biomolecular applications as the equations governing the regulatory control functions are modular and easily modifiable. The model code, parameters, and analysis scripts are available for download under an MIT software license from the Varnerlab GitHub repository.

4.
Nat Chem Biol ; 16(10): 1062-1070, 2020 10.
Article in English | MEDLINE | ID: mdl-32719555

ABSTRACT

A major objective of synthetic glycobiology is to re-engineer existing cellular glycosylation pathways from the top down or construct non-natural ones from the bottom up for new and useful purposes. Here, we have developed a set of orthogonal pathways for eukaryotic O-linked protein glycosylation in Escherichia coli that installed the cancer-associated mucin-type glycans Tn, T, sialyl-Tn and sialyl-T onto serine residues in acceptor motifs derived from different human O-glycoproteins. These same glycoengineered bacteria were used to supply crude cell extracts enriched with glycosylation machinery that permitted cell-free construction of O-glycoproteins in a one-pot reaction. In addition, O-glycosylation-competent bacteria were able to generate an antigenically authentic Tn-MUC1 glycoform that exhibited reactivity with antibody 5E5, which specifically recognizes cancer-associated glycoforms of MUC1. We anticipate that the orthogonal glycoprotein biosynthesis pathways developed here will provide facile access to structurally diverse O-glycoforms for a range of important scientific and therapeutic applications.


Subject(s)
Escherichia coli/metabolism , Glycoproteins/biosynthesis , Polysaccharides/metabolism , Protein Engineering , Antigens, Tumor-Associated, Carbohydrate/biosynthesis , Cell-Free System , Flow Cytometry/methods , Glycosylation , Humans , Polysaccharides/genetics
5.
Metab Eng Commun ; 10: e00113, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32280586

ABSTRACT

In this study, we developed a dynamic mathematical model of E. coli cell-free protein synthesis (CFPS). Model parameters were estimated from a dataset consisting of glucose, organic acids, energy species, amino acids, and protein product, chloramphenicol acetyltransferase (CAT) measurements. The model was successfully trained to simulate these measurements, especially those of the central carbon metabolism. We then used the trained model to evaluate the performance, e.g., the yield and rates of protein production. CAT was produced with an energy efficiency of 12%, suggesting that the process could be further optimized. Reaction group knockouts showed that protein productivity was most sensitive to the oxidative phosphorylation and glycolysis/gluconeogenesis pathways. Amino acid biosynthesis was also important for productivity, while overflow metabolism and TCA cycle affected the overall system state. In addition, translation was more important to productivity than transcription. Finally, CAT production was robust to allosteric control, as were most of the predicted metabolite concentrations; the exceptions to this were the concentrations of succinate and malate, and to a lesser extent pyruvate and acetate, which varied from the measured values when allosteric control was removed. This study is the first to use kinetic modeling to predict dynamic protein production in a cell-free E. coli system, and could provide a foundation for genome scale, dynamic modeling of cell-free E. coli protein synthesis.

6.
Biotechnol Prog ; 36(2): e2932, 2020 03.
Article in English | MEDLINE | ID: mdl-31622535

ABSTRACT

Cellular aggregation in plant suspension cultures directly affects the accumulation of high value products, such as paclitaxel from Taxus. Through application of mechanical shear by repeated, manual pipetting through a 10 ml pipet with a 1.6 mm aperture, the mean aggregate size of a Taxus culture can be reduced without affecting culture growth. When a constant level of mechanical shear was applied over eight generations, the sheared population was maintained at a mean aggregate diameter 194 µm lower than the unsheared control, but the mean aggregate size fluctuated by over 600 µm, indicating unpredictable culture variability. A population balance model was developed to interpret and predict disaggregation dynamics under mechanical shear. Adjustable parameters involved in the breakage frequency function of the population balance model were estimated by nonlinear optimization from experimentally measured size distributions. The optimized model predictions were in strong agreement with measured size distributions. The model was then used to determine the shear requirements to successfully reach a target aggregate size distribution. This model will be utilized in the future to maintain a culture with a constant size distribution with the goal of decreasing culture variability and increasing paclitaxel yields.


Subject(s)
Cell Culture Techniques , Models, Biological , Taxus/cytology , Cell Aggregation , Cell Survival
7.
J Vis Exp ; (152)2019 10 25.
Article in English | MEDLINE | ID: mdl-31710042

ABSTRACT

Cell-free protein synthesis (CFPS) is an emerging technology in systems and synthetic biology for the in vitro production of proteins. However, if CFPS is going to move beyond the laboratory and become a widespread and standard just in time manufacturing technology, we must understand the performance limits of these systems. Toward this question, we developed a robust protocol to quantify 40 compounds involved in glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle, energy metabolism and cofactor regeneration in CFPS reactions. The method uses internal standards tagged with 13C-aniline, while compounds in the sample are derivatized with 12C-aniline. The internal standards and sample were mixed and analyzed by reversed-phase liquid chromatography-mass spectrometry (LC/MS). The co-elution of compounds eliminated ion suppression, allowing the accurate quantification of metabolite concentrations over 2-3 orders of magnitude where the average correlation coefficient was 0.988. Five of the forty compounds were untagged with aniline, however, they were still detected in the CFPS sample and quantified with a standard curve method. The chromatographic run takes approximately 10 min to complete. Taken together, we developed a fast, robust method to separate and accurately quantify 40 compounds involved in CFPS in a single LC/MS run. The method is a comprehensive and accurate approach to characterize cell-free metabolism, so that ultimately, we can understand and improve the yield, productivity and energy efficiency of cell-free systems.


Subject(s)
Cell-Free System , Chromatography, Liquid/methods , Chromatography, Reverse-Phase/methods , Mass Spectrometry/methods , Protein Biosynthesis , Energy Metabolism , Glycolysis , Humans
8.
ACS Synth Biol ; 7(8): 1844-1857, 2018 08 17.
Article in English | MEDLINE | ID: mdl-29944340

ABSTRACT

Cell-free protein synthesis (CFPS) is a widely used research tool in systems and synthetic biology. However, if CFPS is to become a mainstream technology for applications such as point of care manufacturing, we must understand the performance limits and costs of these systems. Toward this question, we used sequence specific constraint based modeling to evaluate the performance of E. coli cell-free protein synthesis. A core E. coli metabolic network, describing glycolysis, the pentose phosphate pathway, energy metabolism, amino acid biosynthesis, and degradation was augmented with sequence specific descriptions of transcription and translation and effective models of promoter function. Model parameters were largely taken from literature; thus the constraint based approach coupled the transcription and translation of the protein product, and the regulation of gene expression, with the availability of metabolic resources using only a limited number of adjustable model parameters. We tested this approach by simulating the expression of two model proteins: chloramphenicol acetyltransferase and dual emission green fluorescent protein, for which we have data sets; we then expanded the simulations to a range of additional proteins. Protein expression simulations were consistent with measurements for a variety of cases. The constraint based simulations confirmed that oxidative phosphorylation was active in the CAT cell-free extract, as without it there was no feasible solution within the experimental constraints of the system. We then compared the metabolism of theoretically optimal and experimentally constrained CFPS reactions, and developed parameter free correlations which could be used to estimate productivity as a function of carbon number and promoter type. Lastly, global sensitivity analysis identified the key metabolic processes that controlled CFPS productivity and energy efficiency. In summary, sequence specific constraint based modeling of CFPS offered a novel means to a priori estimate the performance of a cell-free system, using only a limited number of adjustable parameters. While we modeled the production of a single protein in this study, the approach could easily be extended to multiprotein synthetic circuits, RNA circuits, or the cell-free production of small molecule products.


Subject(s)
Escherichia coli/genetics , Glycolysis/genetics , Oxidative Phosphorylation , Protein Biosynthesis/genetics
9.
BMC Syst Biol ; 11(1): 10, 2017 01 25.
Article in English | MEDLINE | ID: mdl-28122561

ABSTRACT

BACKGROUND: Ensemble modeling is a promising approach for obtaining robust predictions and coarse grained population behavior in deterministic mathematical models. Ensemble approaches address model uncertainty by using parameter or model families instead of single best-fit parameters or fixed model structures. Parameter ensembles can be selected based upon simulation error, along with other criteria such as diversity or steady-state performance. Simulations using parameter ensembles can estimate confidence intervals on model variables, and robustly constrain model predictions, despite having many poorly constrained parameters. RESULTS: In this software note, we present a multiobjective based technique to estimate parameter or models ensembles, the Pareto Optimal Ensemble Technique in the Julia programming language (JuPOETs). JuPOETs integrates simulated annealing with Pareto optimality to estimate ensembles on or near the optimal tradeoff surface between competing training objectives. We demonstrate JuPOETs on a suite of multiobjective problems, including test functions with parameter bounds and system constraints as well as for the identification of a proof-of-concept biochemical model with four conflicting training objectives. JuPOETs identified optimal or near optimal solutions approximately six-fold faster than a corresponding implementation in Octave for the suite of test functions. For the proof-of-concept biochemical model, JuPOETs produced an ensemble of parameters that gave both the mean of the training data for conflicting data sets, while simultaneously estimating parameter sets that performed well on each of the individual objective functions. CONCLUSIONS: JuPOETs is a promising approach for the estimation of parameter and model ensembles using multiobjective optimization. JuPOETs can be adapted to solve many problem types, including mixed binary and continuous variable types, bilevel optimization problems and constrained problems without altering the base algorithm. JuPOETs is open source, available under an MIT license, and can be installed using the Julia package manager from the JuPOETs GitHub repository.


Subject(s)
Models, Biological , Programming Languages , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL
...