Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
Chemosphere ; 339: 139597, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37487977

ABSTRACT

Polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs) are ubiquitous environmental contaminants. They were produced in relatively large volumes in the last century and are now subject to long-term monitoring and regulated under the United Nations Stockholm Convention (SC) on persistent organic pollutants (POPs). Though restricted, human exposure is still a concern and in some regions of the globe the information on the health risk is limited. Sixty breast milk samples from nursing mothers were collected between 2014 and 2015, residing in Bogota, Cartagena, and Medellin, which are industrialized cities in Colombia. This is the first comprehensive study to determine the concentrations in breast milk of PBDEs (n = 7), PCBs (n = 29), and OCPs (n = 28) in Colombia. The detection frequency of POPs, including BDE-47, CB-138, CB-153, CB-156, and CB-180, as well as several OCPs such as chloroneb, aldrins, HCHs, DDTs, and heptachlor, was found to be 100% in all samples tested. The mean concentrations of the analyzed legacy POPs were ∑3DDTs (423 ng/g lw) > chloroneb (50.1 ng/g lw) > ∑2permetrins (17.5 ng/g lw) > ∑2aldrins (16.7 ng/g lw) > 29 PCBs (15.04 ng/g lw) > ∑2chlordanes (CHLs) (11.2 ng/g lw) ≈ ∑3endosulfans (11.1 ng/g lw) > ∑2heptachlors (2.43 ng/g lw) > 7PBDEs (2.1 ng/g lw) > ∑4HCHs (0.58 ng/g lw). The results of this study suggest that the concentrations of DDTs were present in breast milk samples from Colombia at levels comparable to those found in previous studies conducted in other countries such as Brazil, Uruguay, Chile, and various Asian countries. The concentrations of PBDE and PCB congeners, as well as many pesticides, were found to be significantly correlated with each other. This suggests that these substances may have similar sources of exposure. The strength of the pair correlation among concentrations of POPs was assessed using Spearman's correlation coefficients, which varied from r = 0.62 for the association between BDE-47 and CB-153, to a high correlation of 0.99 for the correlation between γ-Chlordane and heptachlor. This suggests that these POPs may share similar sources, such as diet. An exposure assessment model obtained by Monte Carlo simulation showed that infants were exposed to low concentrations of POPs with exception of p,p'-DDE and Aldrin, in which 25th, 50th and 95th percentiles were greater than the threshold reference values of non-carcinogenic effects suggested by US-EPA regulations while the 90th percentile of pg TEQ/Kg-bw/day for dl-PCBs was above of the tolerable daily intake (TDI) proposed by the World Health Organization (WHO). Therefore, the health risk of infants exposed to OCPs and dl-PCBs should be exanimated continually through biomonitoring programs in the Colombian population.


Subject(s)
Environmental Pollutants , Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Infant , Female , Humans , Polychlorinated Biphenyls/analysis , Halogenated Diphenyl Ethers/analysis , Colombia , Milk, Human/chemistry , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Environmental Pollutants/analysis , Dichlorodiphenyl Dichloroethylene , Heptachlor , Risk Assessment , Environmental Monitoring
2.
Pharmaceutics ; 15(5)2023 May 13.
Article in English | MEDLINE | ID: mdl-37242731

ABSTRACT

In recent decades, the microcapsules of lipids, compound lipids, and essential oils, have found numerous potential practical applications in food, textiles, agricultural products, as well as pharmaceuticals. This article discusses the encapsulation of fat-soluble vitamins, essential oils, polyunsaturated fatty acids, and structured lipids. Consequently, the compiled information establishes the criteria to better select encapsulating agents as well as combinations of encapsulating agents best suited to the types of active ingredient to be encapsulated. This review shows a trend towards applications in food and pharmacology as well as the increase in research related to microencapsulation by the spray drying of vitamins A and E, as well as fish oil, thanks to its contribution of omega 3 and omega 6. There is also an increase in articles in which spray drying is combined with other encapsulation techniques, or modifications to the conventional spray drying system.

3.
Foods ; 11(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36553695

ABSTRACT

One of the most common ways to protect oils is microencapsulation, which includes the use of encapsulating agents. Due to the environmental problems facing humanity, this study seeks to combine green biopolymers (microcrystalline cellulose and whey protein isolate) that function as encapsulating agents for grapeseed oil. Grapeseed oil that is obtained from agro-industrial waste has shown health benefits, including cardioprotective, anticancer, antimicrobial, and anti-inflammatory properties. These health benefits have been mainly associated with monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids. In this sense, it has been observed that grapeseed oil can be easily modified by environmental factors such as oxygen, high temperatures, and light, showing the instability and easy degradation of grapeseed oil. In this study, grapeseed oil was encapsulated using the spray-drying technique to conserve its lipidic profile. Powder recovery of the grapeseed oil microcapsules ranged from 65% to 70%. The encapsulation efficiency of the microcapsules varied between 80% and 85%. The FTIR analysis showed chemical interactions that demonstrate chemisorption between the grapeseed oil and the encapsulating material, while the SEM micrographs showed a correct encapsulation in a spherical shape. Gas chromatography showed that the lipid profile of grapeseed oil is preserved thanks to microencapsulation. Release tests showed 80% desorption within the first three hours at pH 5.8. Overall, whey protein and microcrystalline cellulose could be used as a wall material to protect grapeseed oil with the potential application of controlled delivery of fatty acids microcapsules.

4.
Molecules ; 27(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36080248

ABSTRACT

Verbenone and carvone are allylic monoterpenoid ketones with many applications in the fine chemicals industry that can be obtained, respectively, from the allylic oxidation of α-pinene and limonene over a silica-supported iron hexadecachlorinated phthalocyanine (FePcCl16-NH2-SiO2) catalyst and with t-butyl hydroperoxide (TBHP) as oxidant. As there are no reported analyses of the environmental impacts associated with catalytic transformation of terpenes into value-added products that include the steps associated with synthesis of the catalyst and several options of raw materials in the process, this contribution reports the evaluation of the environmental impacts in the conceptual process to produce verbenone and carvone considering two scenarios (SI-raw-oils and SII-purified-oils). The impact categories were evaluated using ReCiPe and IPCC methods implemented in SimaPro 9.3 software. The environmental impacts in the synthesis of the heterogeneous catalyst FePcCl16-NH2-SiO2 showed that the highest burdens in terms of environmental impact come from the use of fossil fuel energy sources and solvents, which primarily affect human health. The most significant environmental impacts associated with carvone and verbenone production are global warming and fine particulate matter formation, with fewer environmental impacts associated with the process that starts directly from turpentine and orange oils (SI-raw-oils) instead of the previously extracted α-pinene and limonene (SII-purified-oils). As TBHP was identified as a hotspot in the production process of verbenone and carvone, it is necessary to choose a more environmentally friendly and energy-efficient oxidizing agent for the oxidation of turpentine and orange oils.


Subject(s)
Silicon Dioxide , Turpentine , Bicyclic Monoterpenes , Cyclohexane Monoterpenes , Humans , Limonene , Plant Oils
5.
Environ Sci Pollut Res Int ; 27(27): 33890-33902, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32537689

ABSTRACT

The search for renewable fuels or components which may improve or replace fossil fuels is an important step towards a sustainable future. In particular, the pine oleoresin produced by conifer trees, which is composed by turpentine oil and non-volatile rosin, may be transformed into alternative fuels. In this work, combustion of six molecules which can be obtained from oleoresin either by distillation (i.e., α- and ß-pinene) or by further oxyfunctionalization (nopol, terpineol, myrtenol, and borneol) was studied to assess the potential of pine oleoresin as raw material for biofuels. Emission indices of the main pollutants (carbon monoxide-CO, unburned hydrocarbons-UHC, and nitrogen oxides-NOx) were obtained in non-premixed co-flow laminar flames of the oleoresin-derived molecules blended with n-heptane. The main characteristics of the flames (i.e., temperature and height) were also determined. Significant increase in flame temperature and reduction in CO and UHC emissions with respect to n-heptane were observed with nopol, terpineol, and myrtenol, along an increase in NOx emissions, suggesting an improvement in combustion performance. In addition, differences in emission indices, evidenced for these molecules (even between α- and ß-pinene), suggest the importance of the molecular structure in the combustion reaction.


Subject(s)
Biofuels/analysis , Plant Extracts , Carbon Monoxide/analysis , Molecular Structure , Vehicle Emissions
6.
Heliyon ; 6(5): e03887, 2020 May.
Article in English | MEDLINE | ID: mdl-32395659

ABSTRACT

Turpentine is a mixture of monoterpene hydrocarbons obtained as a by-product in the paper industry. In this contribution we present its transformation process towards an alcohol named nopol, that is an important household product and fragrance raw material. Reaction conditions were established for the oxyfuntionalization of crude turpentine oil over Sn-MCM-41 catalyst for the selective conversion of ß-pinene to nopol. Synthesized materials were characterized by XRD, N2 adsorption, FT-IR, TEM and chemical absorption. The reaction was tested in 2 mL glass reactor with a sample of commercial turpentine with α-pinene (55.5% w/w) and ß-pinene (39.5% w/w) as main components and scaled up into a 100 mL Parr reactor, getting 92% conversion of ß-pinene and a nopol selectivity of 93%. The reusability tests showed that the catalyst can be reused 4 times without loss of activity. The results showed that 86% less solvent and 37.5% less paraformaldehyde can be used with turpentine, compared to the conditions used with ß-pinene for getting similar catalysts activity.

7.
Rev. colomb. quím. (Bogotá) ; 47(1): 50-56, ene.-abr. 2018. tab, graf
Article in Spanish | LILACS | ID: biblio-900839

ABSTRACT

Resumen Se sintetizaron catalizadores bimetálicos de Cu-Ni en relación molar 2-1 en pellets cilíndricos de carbón activado de diferentes diámetros (0,2 cm; 0,3 cm y 0,4 cm) y longitud (0,4 cm y 0,6 cm); se evaluaron en la reacción de desplazamiento de agua a 330 °C y presión atmosférica. Se realizó un diseño experimental para evaluar el efecto de las variables, diámetro y longitud, sobre la conversión del monóxido de carbono. La importancia de los principales factores y sus interacciones se examinaron por medio del análisis de varianza (ANOVA). Los resultados mostraron que tanto el diámetro como la longitud afectan significativamente la conversión del monóxido de carbono. Los resultados de la actividad catalítica, bajo las mejores condiciones de diámetro (0,4 cm) y longitud (0,6 cm) de los pellets, mostraron una conversión del monóxido de carbono del 96%.


Abstract Bimetallic Cu-Ni catalysts were synthesized with molar ratio 2-1 in cylindrical activated carbon pellets of different diameters (0.2 cm, 0.3 cm, and 0.4 cm) and length (0.4 cm and 0.6 cm). They were evaluated in the water gas shift reaction at 330 °C and atmospheric pressure. An experimental design was developed to evaluate the effect of variables, diameter and length of the pellets, over carbon monoxide conversion. The importance of the main factors and their interactions were examined by analysis of variance (ANOVA). The results showed that both diameter and length of the pellets had significant effect on carbon monoxide conversion. The results of the catalytic activity indicated that up to 96% CO conversion was obtained at the optimum characteristic of the pellets, diameter of 0.2 cm and length of 0.6 cm.


Resumo Foram sintetizados catalisadores bimetálicos de Cu-Ni em proporção molar 2-1 sobre pastilhas de carvão ativado de diferentes diâmetros (0,2 cm; 0,3 cm e 0,4 cm) e comprimentos (0,4 cm e 0,6 cm) e foram avaliados na reação de mudança de vapor de agua a 330 °C e pressão atmosférica. Um desenho experimental foi desenvolvido para avaliar o efeito de variáveis, diâmetro e comprimento, na conversão de monóxido de carbono. A importância dos principais fatores e as suas interações foram examinados por análise de variância (ANOVA), os resultados mostraram que tanto o diâmetro e o comprimento afetam significativamente a conversão de monóxido de carbono. Os resultados da atividade catalítica com as melhores condições de diâmetro (0,4 cm) e o comprimento (0,6 cm) das pastilhas mostrou uma conversão de monóxido de carbono de 96%.

SELECTION OF CITATIONS
SEARCH DETAIL
...