Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 178
Filter
1.
Vet Pathol ; : 3009858241252409, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757523

ABSTRACT

The Cd40l-/- mouse is a well-established model of X-linked hyper-immunoglobulin M (IgM) syndrome, an immunodeficiency disorder of human beings characterized by the lack of expression of the CD40 ligand (CD40L) on activated T-cells, predisposing to infections with opportunistic pathogens like Pneumocystis jirovecii. The aim of our study was to describe the pulmonary lesions in Cd40l-/- mice experimentally infected with Pneumocystis murina, in comparison with naturally infected severe combined immunodeficient (SCID) mice. Formalin-fixed paraffin-embedded lungs from 26 Cd40l-/-, 11 SCID, and 5 uninfected Cd40l-/- mice were examined by histology and immunohistochemistry for the presence of the pathogen and for leukocyte populations (CD3, CD4, CD45R/B220, CD8a, Iba-1, Ly-6G, CD206, MHC II, and NKp46/NCR1). Infection was confirmed by immunohistochemistry in 18/26 (69%) Cd40l-/- mice and in 11/11 (100%) SCID mice. Fourteen out of 26 (54%) Cd40l-/- mice had interstitial pneumonia. Twenty-three out of 26 (88%) Cd40l-/- mice had peribronchiolar/perivascular lymphoplasmacytic infiltrates, rich in B-cells and Mott cells. Acidophilic macrophage pneumonia was additionally found in 20/26 (77%) Cd40l-/- mice. Only 4/11 (36%) SCID mice had interstitial pneumonia, but no peribronchiolar/perivascular infiltrates or acidophilic macrophage pneumonia were observed in this strain. This study represents the first description of pulmonary histopathological lesions in Cd40l-/- mice infected with P. murina. We speculate that the singular characteristics of the inflammatory infiltrates observed in Cd40l-/- mice could be explained by the specific immune phenotype of the model.

2.
Front Immunol ; 15: 1288045, 2024.
Article in English | MEDLINE | ID: mdl-38629065

ABSTRACT

Thymic epithelial tumors (TETs) are rare mediastinal cancers originating from the thymus, classified in two main histotypes: thymoma and thymic carcinoma (TC). TETs affect a primary lymphoid organ playing a critical role in keeping T-cell homeostasis and ensuring an adequate immunological tolerance against "self". In particular, thymomas and not TC are frequently associated with autoimmune diseases (ADs), with Myasthenia Gravis being the most common AD present in 30% of patients with thymoma. This comorbidity, in addition to negatively affecting the quality and duration of patients' life, reduces the spectrum of the available therapeutic options. Indeed, the presence of autoimmunity represents an exclusion criteria for the administration of the newest immunotherapeutic treatments with checkpoint inhibitors. The pathophysiological correlation between TETs and autoimmunity remains a mystery. Several studies have demonstrated the presence of a residual and active thymopoiesis in adult patients affected by thymomas, especially in mixed and lymphocytic-rich thymomas, currently known as type AB and B thymomas. The aim of this review is to provide the state of art in regard to the histological features of the different TET histotype, to the role of the different immune cells infiltrating tumor microenvironments and their impact in the break of central immunologic thymic tolerance in thymomas. We discuss here both cellular and molecular immunologic mechanisms inducing the onset of autoimmunity in TETs, limiting the portfolio of therapeutic strategies against TETs and greatly impacting the prognosis of associated autoimmune diseases.


Subject(s)
Myasthenia Gravis , Neoplasms, Glandular and Epithelial , Thymoma , Thymus Neoplasms , Adult , Humans , Autoimmunity , Thymus Neoplasms/complications , Neoplasms, Glandular and Epithelial/therapy , Neoplasms, Glandular and Epithelial/complications , Tumor Microenvironment
3.
Nat Cell Biol ; 26(5): 719-730, 2024 May.
Article in English | MEDLINE | ID: mdl-38594587

ABSTRACT

During embryonic development, blood cells emerge from specialized endothelial cells, named haemogenic endothelial cells (HECs). As HECs are rare and only transiently found in early developing embryos, it remains difficult to distinguish them from endothelial cells. Here we performed transcriptomic analysis of 28- to 32-day human embryos and observed that the expression of Fc receptor CD32 (FCGR2B) is highly enriched in the endothelial cell population that contains HECs. Functional analyses using human embryonic and human pluripotent stem cell-derived endothelial cells revealed that robust multilineage haematopoietic potential is harboured within CD32+ endothelial cells and showed that 90% of CD32+ endothelial cells are bona fide HECs. Remarkably, these analyses indicated that HECs progress through different states, culminating in FCGR2B expression, at which point cells are irreversibly committed to a haematopoietic fate. These findings provide a precise method for isolating HECs from human embryos and human pluripotent stem cell cultures, thus allowing the efficient generation of haematopoietic cells in vitro.


Subject(s)
Embryonic Development , Receptors, IgG , Humans , Embryonic Development/genetics , Receptors, IgG/metabolism , Receptors, IgG/genetics , Hemangioblasts/metabolism , Hemangioblasts/cytology , Cell Differentiation , Endothelial Cells/metabolism , Endothelial Cells/cytology , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Cell Lineage , Cells, Cultured , Gene Expression Regulation, Developmental , Hematopoiesis , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Transcriptome , Gene Expression Profiling , Embryo, Mammalian/metabolism , Embryo, Mammalian/cytology
4.
Sci Transl Med ; 16(733): eadh8162, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324638

ABSTRACT

Recombination activating genes (RAGs) are tightly regulated during lymphoid differentiation, and their mutations cause a spectrum of severe immunological disorders. Hematopoietic stem and progenitor cell (HSPC) transplantation is the treatment of choice but is limited by donor availability and toxicity. To overcome these issues, we developed gene editing strategies targeting a corrective sequence into the human RAG1 gene by homology-directed repair (HDR) and validated them by tailored two-dimensional, three-dimensional, and in vivo xenotransplant platforms to assess rescue of expression and function. Whereas integration into intron 1 of RAG1 achieved suboptimal correction, in-frame insertion into exon 2 drove physiologic human RAG1 expression and activity, allowing disruption of the dominant-negative effects of unrepaired hypomorphic alleles. Enhanced HDR-mediated gene editing enabled the correction of human RAG1 in HSPCs from patients with hypomorphic RAG1 mutations to overcome T and B cell differentiation blocks. Gene correction efficiency exceeded the minimal proportion of functional HSPCs required to rescue immunodeficiency in Rag1-/- mice, supporting the clinical translation of HSPC gene editing for the treatment of RAG1 deficiency.


Subject(s)
Gene Editing , Hematopoietic Stem Cell Transplantation , Animals , Humans , Mice , Exons , Gene Editing/methods , Hematopoietic Stem Cells/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
5.
J Allergy Clin Immunol ; 153(1): 341-348.e3, 2024 01.
Article in English | MEDLINE | ID: mdl-37567393

ABSTRACT

BACKGROUND: Mutations in the recombinase-activating genes 1 and 2 (RAG1, RAG2) cause a spectrum of phenotypes, ranging from severe combined immune deficiency to combined immune deficiency with immune dysregulation (CID-ID). Hematopoietic cell transplantation is a curative option. Use of conditioning facilitates robust and durable stem cell engraftment and immune reconstitution but may cause toxicity. Transplantation from haploidentical donors is associated with poor outcome in patients with CID-ID. OBJECTIVES: We sought to evaluate multilineage engraftment and immune reconstitution after conditioning with CD45-antibody drug conjugate (CD45-ADC) as a single agent in hypomorphic mice with Rag1 mutation treated with congenic and haploidentical hematopoietic cell transplantation. METHODS: Rag1-F971L mice, a model of CID-ID, were conditioned with various doses of CD45-ADC, total body irradiation, or isotype-ADC, and then given transplants of total bone marrow cells from congenic or haploidentical donors. Flow cytometry was used to assess chimerism and immune reconstitution. Histology was used to document reconstitution of thymic architecture. RESULTS: Conditioning with CD45-ADC as a single agent allowed robust engraftment and immune reconstitution, with restoration of thymus, bone marrow, and peripheral compartments. The optimal doses of CD45-ADC were 1.5 mg/kg and 5 mg/kg for congenic and haploidentical transplantation, respectively. No graft-versus-host disease was observed. CONCLUSIONS: Conditioning with CD45-ADC alone allows full donor chimerism and immune reconstitution in Rag1 hypomorphic mice even following haploidentical transplantation, opening the way for the implementation of similar approaches in humans.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Immunologic Deficiency Syndromes , Humans , Mice , Animals , Transplantation Conditioning , Bone Marrow Transplantation , Immunologic Deficiency Syndromes/therapy , Homeodomain Proteins/genetics
6.
Front Immunol ; 14: 1268620, 2023.
Article in English | MEDLINE | ID: mdl-38022635

ABSTRACT

Introduction: Recombination activating genes (RAG) 1 and 2 defects are the most frequent form of severe combined immunodeficiency (SCID). Patients with residual RAG activity have a spectrum of clinical manifestations ranging from Omenn syndrome to delayed-onset combined immunodeficiency, often associated with granulomas and/or autoimmunity (CID-G/AI). Lentiviral vector (LV) gene therapy (GT) has been proposed as an alternative treatment to the standard hematopoietic stem cell transplant and a clinical trial for RAG1 SCID patients recently started. However, GT in patients with hypomorphic RAG mutations poses additional risks, because of the residual endogenous RAG1 expression and the general state of immune dysregulation and associated inflammation. Methods: In this study, we assessed the efficacy of GT in 2 hypomorphic Rag1 murine models (Rag1F971L/F971L and Rag1R972Q/R972Q), exploiting the same LV used in the clinical trial encoding RAG1 under control of the MND promoter. Results and discussion: Starting 6 weeks after transplant, GT-treated mice showed a decrease in proportion of myeloid cells and a concomitant increase of B, T and total white blood cells. However, counts remained lower than in mice transplanted with WT Lin- cells. At euthanasia, we observed a general redistribution of immune subsets in tissues, with the appearance of mature recirculating B cells in the bone marrow. In the thymus, we demonstrated correction of the block at double negative stage, with a modest improvement in the cortical/medullary ratio. Analysis of antigenspecific IgM and IgG serum levels after in vivo challenge showed an amelioration of antibody responses, suggesting that the partial immune correction could confer a clinical benefit. Notably, no overt signs of autoimmunity were detected, with B-cell activating factor decreasing to normal levels and autoantibodies remaining stable after GT. On the other hand, thymic enlargement was frequently observed, although not due to vector integration and insertional mutagenesis. In conclusion, our work shows that GT could partially alleviate the combined immunodeficiency of hypomorphic RAG1 patients and that extensive efficacy and safety studies with alternative models are required before commencing RAG gene therapy in thesehighly complex patients.


Subject(s)
Immunologic Deficiency Syndromes , Severe Combined Immunodeficiency , Humans , Mice , Animals , Homeodomain Proteins/genetics , Immunologic Deficiency Syndromes/therapy , B-Lymphocytes , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/therapy , Genetic Therapy , Immunoproteins , Mutation
7.
EMBO J ; 42(23): e114188, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37916874

ABSTRACT

Hyper IgM1 is an X-linked combined immunodeficiency caused by CD40LG mutations, potentially treatable with CD4+ T-cell gene editing with Cas9 and a "one-size-fits-most" corrective template. Contrary to established gene therapies, there is limited data on the genomic alterations following long-range gene editing, and no consensus on the relevant assays. We developed drop-off digital PCR assays for unbiased detection of large on-target deletions and found them at high frequency upon editing. Large deletions were also common upon editing different loci and cell types and using alternative Cas9 and template delivery methods. In CD40LG edited T cells, on-target deletions were counter-selected in culture and further purged by enrichment for edited cells using a selector coupled to gene correction. We then validated the sensitivity of optical genome mapping for unbiased detection of genome wide rearrangements and uncovered on-target trapping of one or more vector copies, which do not compromise functionality, upon editing using an integrase defective lentiviral donor template. No other recurring events were detected. Edited patient cells showed faithful reconstitution of CD40LG regulated expression and function with a satisfactory safety profile. Large deletions and donor template integrations should be anticipated and accounted for when designing and testing similar gene editing strategies.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Humans , Gene Editing/methods , Genome , T-Lymphocytes , CD4-Positive T-Lymphocytes
8.
Mol Ther Methods Clin Dev ; 30: 546-557, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37693944

ABSTRACT

Hyper-IgM1 is a rare X-linked combined immunodeficiency caused by mutations in the CD40 ligand (CD40LG) gene with a median survival of 25 years, potentially treatable with in situ CD4+ T cell gene editing with Cas9 and a one-size-fits-most corrective donor template. Here, starting from our research-grade editing protocol, we pursued the development of a good manufacturing practice (GMP)-compliant, scalable process that allows for correction, selection and expansion of edited cells, using an integrase defective lentiviral vector as donor template. After systematic optimization of reagents and conditions we proved maintenance of stem and central memory phenotypes and expression and function of CD40LG in edited healthy donor and patient cells recapitulating the physiological CD40LG regulation. We then documented the preserved fitness of edited cells by xenotransplantation into immunodeficient mice. Finally, we transitioned to large-scale manufacturing, and developed a panel of quality control assays. Overall, our GMP-compliant process takes long-range gene editing one step closer to clinical application with a reassuring safety profile.

9.
Aging (Albany NY) ; 15(12): 5279-5289, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37382595

ABSTRACT

T14 is a 14mer peptide derived from the C-terminus of acetylcholinesterase (AChE). Once cleaved, it is independently bioactive of the parent molecule and enhances calcium influx in different cell types, in a range of scenarios: it binds to an allosteric site selectively on the alpha-7 receptor, where it modulates calcium influx and is thus a potential trophic agent, as already reported in a range of normal developmental scenarios. However, if inappropriately activated, this erstwhile beneficial effect converts to a toxic one, resulting in pathologies as disparate as Alzheimer's and various metastatic cancers. Given that epidermal keratinocyte cells have the same ectodermal origin as brain cells, as well as expressing AChE and the alpha-7 receptor, we have explored whether T14 plays a comparable role. Here we report that the T14 immunoreactivity is detectable in human keratinocytes with levels inversely related to age: this decrease is even more apparent with chronic photo-exposure and thus accelerated skin aging. We conclude that T14, an agent promoting cell growth and renewal in other parts of the body, also operates in skin, Moreover, monitoring of keratinocyte T14 levels might offer further insights into the now well reported link between degenerative diseases and epidermal cell profile.


Subject(s)
Skin Aging , Humans , Acetylcholinesterase/metabolism , Peptide Fragments/metabolism , Calcium/metabolism , Peptides , Keratinocytes/metabolism
10.
Semin Immunol ; 66: 101731, 2023 03.
Article in English | MEDLINE | ID: mdl-36863140

ABSTRACT

Allogeneic hematopoietic stem cell transplantation is an effective treatment to cure inborn errors of immunity. Remarkable progress has been achieved thanks to the development and optimization of effective combination of advanced conditioning regimens and use of immunoablative/suppressive agents preventing rejection as well as graft versus host disease. Despite these tremendous advances, autologous hematopoietic stem/progenitor cell therapy based on ex vivo gene addition exploiting integrating γ-retro- or lenti-viral vectors, has demonstrated to be an innovative and safe therapeutic strategy providing proof of correction without the complications of the allogeneic approach. The recent advent of targeted gene editing able to precisely correct genomic variants in an intended locus of the genome, by introducing deletions, insertions, nucleotide substitutions or introducing a corrective cassette, is emerging in the clinical setting, further extending the therapeutic armamentarium and offering a cure to inherited immune defects not approachable by conventional gene addition. In this review, we will analyze the current state-of-the art of conventional gene therapy and innovative protocols of genome editing in various primary immunodeficiencies, describing preclinical models and clinical data obtained from different trials, highlighting potential advantages and limits of gene correction.


Subject(s)
Gene Editing , Hematopoietic Stem Cell Transplantation , Humans , Gene Editing/methods , Genetic Therapy/methods , Genetic Vectors/genetics
11.
Curr Opin Immunol ; 80: 102279, 2023 02.
Article in English | MEDLINE | ID: mdl-36529093

ABSTRACT

Increased immunogloblulin-E (IgE) levels associated with eosinophilia represent a common finding observed in Omenn syndrome, a severe immunodeficiency caused by decreased V(D)J recombination, leading to restricted T- and B-cell receptor repertoire. V(D)J recombination is initiated by the lymphoid-restricted recombination-activating gene (RAG) recombinases. The lack of RAG proteins causes a block in lymphocyte differentiation, resulting in T-B- severe combined immunodeficiency. Conversely, hypomorphic mutations allow the generation of few T and B cells, leading to a spectrum of immunological phenotypes, in which immunodeficiency associates to inflammation, immune dysregulation, and autoimmunity. Elevated IgE levels are frequently observed in hypomorphic RAG patients. Here, we describe the role of RAG genes in lymphocyte differentiation and maintenance of immune tolerance.


Subject(s)
Immunologic Deficiency Syndromes , Severe Combined Immunodeficiency , Humans , DNA-Binding Proteins/genetics , Severe Combined Immunodeficiency/genetics , Mutation/genetics , Immunoglobulin E
12.
Cell Stem Cell ; 29(10): 1428-1444.e9, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36206730

ABSTRACT

Long-range gene editing by homology-directed repair (HDR) in hematopoietic stem/progenitor cells (HSPCs) often relies on viral transduction with recombinant adeno-associated viral vector (AAV) for template delivery. Here, we uncover unexpected load and prolonged persistence of AAV genomes and their fragments, which trigger sustained p53-mediated DNA damage response (DDR) upon recruiting the MRE11-RAD50-NBS1 (MRN) complex on the AAV inverted terminal repeats (ITRs). Accrual of viral DNA in cell-cycle-arrested HSPCs led to its frequent integration, predominantly in the form of transcriptionally competent ITRs, at nuclease on- and off-target sites. Optimized delivery of integrase-defective lentiviral vector (IDLV) induced lower DNA load and less persistent DDR, improving clonogenic capacity and editing efficiency in long-term repopulating HSPCs. Because insertions of viral DNA fragments are less frequent with IDLV, its choice for template delivery mitigates the adverse impact and genotoxic burden of HDR editing and should facilitate its clinical translation in HSPC gene therapy.


Subject(s)
DNA, Viral , Tumor Suppressor Protein p53 , CRISPR-Cas Systems , DNA Damage , Gene Editing , Hematopoietic Stem Cells , Humans , Integrases , Tumor Suppressor Protein p53/genetics
13.
Bone ; 165: 116519, 2022 12.
Article in English | MEDLINE | ID: mdl-35981697

ABSTRACT

Discovery that mutations in TCIRG1 (also known as Atp6i) gene are responsible for most instances of autosomal recessive osteopetrosis (ARO) heralded a new era for comprehension and treatment of this phenotypically heterogeneous rare bone disease. TCIRG1 encodes the a3 subunit, an essential isoform of the vacuolar ATPase proton pump involved in acidification of the osteoclast resorption lacuna and in secretory lysosome trafficking. TCIRG1 defects lead to inefficient bone resorption by nonfunctional osteoclasts seen in abundance on bone marrow biopsy, delineating this ARO as 'osteoclast-rich'. Presentation is usually in early childhood and features of extramedullary haematopoiesis (hepatosplenomegaly, anaemia, thrombocytopenia) due to bone marrow fibrosis, and cranial nerve impingement (blindness in particular). Impaired dietary calcium uptake due to high pH causes the co-occurrence of rickets, described as "osteopetrorickets". Osteoclast dysfunction leads to early death if untreated, and allogeneic haematopoietic stem cell transplantation is currently the treatment of choice. Studies of patients as well as of mouse models carrying spontaneous (the oc/oc mouse) or targeted disruption of Atp6i (TCIRG1) gene have been instrumental providing insight into disease pathogenesis and development of novel cellular therapies that exploit gene correction.


Subject(s)
Bone Resorption , Osteopetrosis , Vacuolar Proton-Translocating ATPases , Child, Preschool , Humans , Mice , Animals , Osteopetrosis/pathology , Vacuolar Proton-Translocating ATPases/genetics , Osteoclasts/metabolism , Calcium, Dietary , Mutation/genetics , Bone Resorption/pathology
14.
Mol Ther Methods Clin Dev ; 25: 508-519, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35615710

ABSTRACT

Insulin is the primary autoantigen (Ag) targeted by T cells in type 1 diabetes (T1D). Although biomarkers precisely identifying subjects at high risk of T1D are available, successful prophylaxis is still an unmet need. Leaky central tolerance to insulin may be partially ascribed to the instability of the MHC-InsB9-23 complex, which lowers TCR avidity, thus resulting in defective negative selection of autoreactive clones and inadequate insulin-specific T regulatory cell (Treg) induction. We developed a lentiviral vector (LV)-based strategy to engineer thymic epithelial cells (TECs) to correct diabetogenic T cell repertoire. Intrathymic (it) LV injection established stable transgene expression in EpCAM+ TECs, by virtue of transduction of TEC precursors. it-LV-driven presentation of the immunodominant portion of ovalbumin allowed persistent and complete negative selection of responsive T cells in OT-II chimeric mice. We successfully applied this strategy to correct the diabetogenic repertoire of young non-obese diabetic mice, imposing the presentation by TECs of the stronger agonist InsulinB9-23R22E and partially depleting the existing T cell compartment. We further circumscribed LV-driven presentation of InsulinB9-23R22E by micro-RNA regulation to CD45- TECs without loss of efficacy in protection from diabetes, associated with expanded insulin-specific Tregs. Overall, our gene transfer-based prophylaxis fine-tuned the central tolerance processes of negative selection and Treg induction, correcting an autoimmune prone T cell repertoire.

15.
J Phys Chem B ; 126(13): 2564-2572, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35344657

ABSTRACT

Ion pairing in water solutions alters both the water hydrogen-bond network and ion solvation, modifying the dynamics and properties of electrolyte water solutions. Here, we report an anomalous intrinsic fluorescence of KCl aqueous solution at room temperature and show that its intensity increases with the salt concentration. From the ab initio density functional theory (DFT) and time-dependent DFT modeling, we propose that the fluorescence emission could originate from the stiffening of the hydrogen bond network in the hydration shell of solvated ion-pairs that suppresses the fast nonradiative decay and allows the slower radiative channel to become a possible decay pathway. Because computations suggest that the fluorophores are the local ion-water structures present in the prenucleation phase, this band could be the signature of the incoming salt precipitation.


Subject(s)
Sodium Chloride , Water , Hydrogen Bonding , Solutions/chemistry , Spectrum Analysis , Water/chemistry
17.
Stem Cell Reports ; 16(11): 2607-2616, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34678207

ABSTRACT

PBX1 regulates the balance between self-renewal and differentiation of hematopoietic stem cells and maintains proto-oncogenic transcriptional pathways in early progenitors. Its increased expression was found in myeloproliferative neoplasm (MPN) patients bearing the JAK2V617F mutation. To investigate if PBX1 contributes to MPN, and to explore its potential as therapeutic target, we generated the JP mouse strain, in which the human JAK2 mutation is induced in the absence of PBX1. Typical MPN features, such as thrombocythemia and granulocytosis, did not develop without PBX1, while erythrocytosis, initially displayed by JP mice, gradually resolved over time; splenic myeloid metaplasia and in vitro cytokine independent growth were absent upon PBX1 inactivation. The aberrant transcriptome in stem/progenitor cells from the MPN model was reverted by the absence of PBX1, demonstrating that PBX1 controls part of the molecular pathways deregulated by the JAK2V617F mutation. Modulation of the PBX1-driven transcriptional program might represent a novel therapeutic approach.


Subject(s)
Gene Expression Regulation, Neoplastic , Hematopoietic Stem Cells/metabolism , Myeloproliferative Disorders/genetics , Neoplasms/genetics , Pre-B-Cell Leukemia Transcription Factor 1/genetics , Animals , Disease Models, Animal , Disease Progression , Gene Expression Profiling/methods , Humans , Mice, Knockout , Mice, Transgenic , Mutation , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , Neoplasms/metabolism , Neoplasms/pathology , Pre-B-Cell Leukemia Transcription Factor 1/metabolism , RNA-Seq/methods , Signal Transduction/genetics
18.
Int J Mol Sci ; 22(19)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34639177

ABSTRACT

In this paper, we report the metabolic characterization of two foci, F1 and F3, obtained at the end of Cell Transformation Assay (CTA), performed by treating C3H10T1/2Cl8 mouse embryo fibroblasts with 1 µM CdCl2 for 24 h. The elucidation of the cadmium action mechanism can be useful both to improve the in vitro CTA and to yield insights into carcinogenesis. The metabolism of the two foci was investigated through Seahorse and enzyme activity assays; mitochondria were studied in confocal microscopy and reactive oxygen species were detected by flow cytometry. The results showed that F1 focus has higher glycolytic and TCA fluxes compared to F3 focus, and a more negative mitochondrial membrane potential, so that most ATP synthesis is performed through oxidative phosphorylation. Confocal microscopy showed mitochondria crowded in the perinuclear region. On the other hand, F3 focus showed lower metabolic rates, with ATP mainly produced by glycolysis and damaged mitochondria. Overall, our results showed that cadmium treatment induced lasting metabolic alterations in both foci. Triggered by the loss of the Pasteur effect in F1 focus and by mitochondrial impairment in F3 focus, these alterations lead to a loss of coordination among glycolysis, TCA and oxidative phosphorylation, which leads to malignant transformation.


Subject(s)
Cadmium/toxicity , Carcinogenesis/pathology , Glycolysis , Mitochondria/pathology , Oxidative Phosphorylation , Reactive Oxygen Species/metabolism , Animals , Autophagy , Carcinogenesis/chemically induced , Carcinogenesis/metabolism , Cells, Cultured , In Vitro Techniques , Membrane Potential, Mitochondrial , Mice , Mice, Inbred C3H , Mitochondria/drug effects , Mitochondria/metabolism
19.
Cell Rep ; 37(3): 109871, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34686325

ABSTRACT

Human Vδ2 cells are innate-like γδ T effectors performing potent immune surveillance against tumors. The constitutive expression of NKG2A identifies a subset of Vδ2 T cells licensed with an intrinsic hyper-responsiveness against cancer. Indeed, the transcriptomic profiles of NKG2A+ and NKG2A- cells characterize two distinct "intralineages" of Vδ2 T lymphocytes that appear early during development, keep their phenotypes, and show self-renewal capabilities in adult life. The hyper-responsiveness of NKG2A+ Vδ2 T cells is counterbalanced by the inhibitory signaling delivered by human leukocyte antigen E (HLA-E) expressed on malignant cells as a tumor-escape mechanism. However, either masking or knocking out NKG2A restores the capacity of Vδ2 T cells to exert the highest effector functions even against HLA-E+ tumors. This is highly relevant in the clinic, as the different degrees of engagement of the NKG2A-HLA-E checkpoint in hepatocellular carcinoma, glioblastoma, and non-small cell lung cancer directly impact patients' overall survival. These findings open avenues for developing combined cellular and immunologic anticancer therapies.


Subject(s)
Cytotoxicity, Immunologic , Intraepithelial Lymphocytes/metabolism , Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating/metabolism , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Neoplasms/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Aged , Case-Control Studies , Cell Proliferation , Cell Self Renewal , Coculture Techniques , Cytokines/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Immunity, Innate , Infant , Intraepithelial Lymphocytes/immunology , K562 Cells , Lymphocytes, Tumor-Infiltrating/immunology , Male , Middle Aged , NK Cell Lectin-Like Receptor Subfamily C/genetics , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , Phenotype , Receptors, Antigen, T-Cell, gamma-delta/genetics , Signal Transduction
20.
Blood Adv ; 5(23): 5150-5163, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34547769

ABSTRACT

Hemostatic abnormalities and impaired platelet function have been described in patients affected by connective tissue disorders. We observed a moderate bleeding tendency in patients affected by collagen VI-related disorders and investigated the defects in platelet functionality, whose mechanisms are unknown. We demonstrated that megakaryocytes express collagen VI that is involved in the regulation of functional platelet production. By exploiting a collagen VI-null mouse model (Col6a1-/-), we found that collagen VI-null platelets display significantly increased susceptibility to activation and intracellular calcium signaling. Col6a1-/- megakaryocytes and platelets showed increased expression of stromal interaction molecule 1 (STIM1) and ORAI1, the components of store-operated calcium entry (SOCE), and activation of the mammalian target of rapamycin (mTOR) signaling pathway. In vivo mTOR inhibition by rapamycin reduced STIM1 and ORAI1 expression and calcium flows, resulting in a normalization of platelet susceptibility to activation. These defects were cell autonomous, because transplantation of lineage-negative bone marrow cells from Col6a1-/- mice into lethally irradiated wild-type animals showed the same alteration in SOCE and platelet activation seen in Col6a1-/- mice. Peripheral blood platelets of patients affected by collagen VI-related diseases, Bethlem myopathy and Ullrich congenital muscular dystrophy, displayed increased expression of STIM1 and ORAI1 and were more prone to activation. Altogether, these data demonstrate the importance of collagen VI in the production of functional platelets by megakaryocytes in mouse models and in collagen VI-related diseases.


Subject(s)
Blood Platelets , Calcium Signaling , Animals , Blood Platelets/metabolism , Collagen , Humans , Megakaryocytes/metabolism , Mice , ORAI1 Protein/genetics , ORAI1 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...