Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
J Neurosci ; 44(28)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38744532

ABSTRACT

Obesity is associated with hypogonadism in males, characterized by low testosterone and sperm number. Previous studies determined that these stem from dysregulation of hypothalamic circuitry that regulates reproduction, by unknown mechanisms. Herein, we used mice fed chronic high-fat diet, which mimics human obesity, to determine mechanisms of impairment at the level of the hypothalamus, in particular gonadotropin-releasing hormone (GnRH) neurons that regulate luteinizing hormone (LH), which then regulates testosterone. Consistent with obese humans, we demonstrated lower LH, and lower pulse frequency of LH secretion, but unchanged pituitary responsiveness to GnRH. LH pulse frequency is regulated by pulsatile GnRH secretion, which is controlled by kisspeptin. Peripheral and central kisspeptin injections, and DREADD-mediated activation of kisspeptin neurons, demonstrated that kisspeptin neurons were suppressed in obese mice. Thus, we investigated regulators of kisspeptin secretion. We determined that the LH response to NMDA was lower in obese mice, corresponding to fewer glutamate receptors in kisspeptin neurons, which may be critical for kisspeptin synchronization. Given that kisspeptin neurons also interact with anorexigenic POMC neurons, which are affected by obesity, we examined their cross talk, and determined that the LH response to either DREADD-mediated activation of POMC neurons or central injection of αMSH, a product of POMC, is abolished in obese mice. This was accompanied by diminished levels of αMSH receptor, MC4R, in kisspeptin neurons. Together, our studies determined that obesity leads to the downregulation of receptors that regulate kisspeptin neurons, which is associated with lower LH pulse frequency, leading to lower LH and hypogonadism.


Subject(s)
Gonadotropin-Releasing Hormone , Kisspeptins , Luteinizing Hormone , Mice, Inbred C57BL , Neurons , Obesity , Pro-Opiomelanocortin , Animals , Male , Kisspeptins/metabolism , Obesity/metabolism , Luteinizing Hormone/metabolism , Luteinizing Hormone/blood , Mice , Neurons/metabolism , Pro-Opiomelanocortin/metabolism , Gonadotropin-Releasing Hormone/metabolism , Diet, High-Fat/adverse effects
2.
Pharmaceutics ; 16(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38543300

ABSTRACT

Excitotoxicity has been linked to the pathogenesis of several serious degenerative ocular diseases. Long-term overactivation of the NMDA receptor by glutamate in retinal ganglion cells (RGCs) results in degeneration, apoptosis and loss of function leading to blindness. NMDA receptor antagonists have been proposed as a pharmacological blockage of glutamate excitotoxicity. However, an inhibition of the pathway activated by glutamate receptors has intolerable side effects. An interesting pharmacological alternative would be the use of antiapoptotic compounds as RGCs' neuroprotective active substances. Several mechanisms have been proposed to explain neuroprotection, including anti-inflammatory and scavenging activities. Here, the role of dexamethasone in neuroprotection was studied. For this purpose, original controlled release systems composed of microparticles containing dexamethasone with or without vitamin E and human serum albumin (HSA) were designed. The particles were prepared by the solid-in-oil-in-water (S/O/W) emulsion-evaporation technique. After properly characterization of the particles, they were intravitreally injected into an rat model of acute ocular excitotoxicity injury. The functionality of the retina was determined by electroretinography and RGCs were counted after cell immunohistochemistry. These microparticulate systems showed the ability to maintain normal electroretinal activity and promoted significant protection of RGCs. Through this proof of concept, we demonstrated that dexamethasone could be a useful anti-inflammatory agent to avoid the progression of degenerative ocular diseases. Furthermore, when administered in controlled release systems that provide low concentrations during prolonged periods of time, not only can the patient's comfort be increased but the cytotoxicity of the drugs can also be avoided.

3.
ESC Heart Fail ; 2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38494834

ABSTRACT

AIMS: Compensatory mechanisms in heart failure (HF) are triggered to maintain adequate cardiac output. Among them, hyperactivation of the sympathetic nervous system (SNS) is one of the main ones and carries a worse prognosis. The pupillary reflex depends on the SNS, and we can evaluate it through pupillometry. The aim of the study was to compare the differences in pupillary reflex between patients with acute HF and controls and to analyse whether these differences in pupillary reflex may offer a new and easy prognostic factor in such patients. METHODS AND RESULTS: We prospectively and consecutively included 107 patients admitted with decompensated HF. Quantitative pupillometry was performed with the NeuroOptics pupillometry during the first 24 h after admission and prior to discharge. The results were compared with those of a group of 100 healthy volunteers who also underwent pupillometry. The maximum baseline pupil size (MBPS) and the minimum pupil diameter (MPD) were measured. Patients with decompensated HF have a higher MBPS (3.64 ± 0.81) and higher MPD (2.60 ± 0.58) than HF patients at discharge and in the control group (P-value = 0.01 and 0.01, respectively). Also, HF patients presented an improvement in pupillometric values at discharge [MBPS (3.47 ± 0.79) and MPD (2.51 ± 0.58)] and showed no differences compared with the control group [MBPS (3.34 ± 0.82) and MPD (2.40 ± 0.53)] (P-value = 0.19 and 0.14, respectively). In addition, MBPS provides a good independent predictor of in-hospital and 1 month mortality in patients admitted with HF. Six patients (5.61%) died during hospital admission, and 11 patients (10.2%) died in the first month after discharge. Also, four patients (3.74%) were readmitted within 1 month of discharge. The receiver operating characteristic (ROC) curve for predicting in-hospital mortality through MBPS was 0.823. No patient with an MBPS < 3.7 mm died. The ROC curve for predicting combined mortality or readmission within the first month for MBPS was 0.698. CONCLUSIONS: Pupillometry may be a new, non-invasive, and simple tool to determine the status of SNS, help in the prognostic stratification of acute HF patients, and improve therapeutic management.

4.
Sci Rep ; 14(1): 4176, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38378796

ABSTRACT

Huntington's disease (HD) is caused by an aberrant expansion of CAG repeats in the HTT gene that mainly affects basal ganglia. Although striatal dysfunction has been widely studied in HD mouse models, other brain areas can also be relevant to the pathology. In this sense, we have special interest on the retina as this is the most exposed part of the central nervous system that enable health monitoring of patients using noninvasive techniques. To establish the retina as an appropriate tissue for HD studies, we need to correlate the retinal alterations with those in the inner brain, i.e., striatum. We confirmed the malfunction of the transgenic R6/1 retinas, which underwent a rearrangement of their transcriptome as extensive as in the striatum. Although tissue-enriched genes were downregulated in both areas, a neuroinflammation signature was only clearly induced in the R6/1 retina in which the observed glial activation was reminiscent of the situation in HD patient's brains. The retinal neuroinflammation was confirmed in the slow progressive knock-in zQ175 strain. Overall, these results demonstrated the suitability of the mouse retina as a research model for HD and its associated glial activation.


Subject(s)
Huntington Disease , Mice , Animals , Humans , Huntington Disease/pathology , Mice, Transgenic , Gliosis/genetics , Gliosis/pathology , Microglia/metabolism , Neuroinflammatory Diseases , Disease Models, Animal , Corpus Striatum/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism
5.
Endocrinology ; 165(3)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38146776

ABSTRACT

Obesity is a chronic disease with increasing prevalence worldwide. Obesity leads to an increased risk of heart disease, stroke, and diabetes, as well as endocrine alterations, reproductive disorders, changes in basal metabolism, and stress hormone production, all of which are regulated by the pituitary. In this study, we performed single-cell RNA sequencing of pituitary glands from male mice fed control and high-fat diet (HFD) to determine obesity-mediated changes in pituitary cell populations and gene expression. We determined that HFD exposure is associated with dramatic changes in somatotrope and lactotrope populations, by increasing the proportion of somatotropes and decreasing the proportion of lactotropes. Fractions of other hormone-producing cell populations remained unaffected. Gene expression changes demonstrated that in HFD, somatotropes became more metabolically active, with increased expression of genes associated with cellular respiration, and downregulation of genes and pathways associated with cholesterol biosynthesis. Despite a lack of changes in gonadotrope fraction, genes important in the regulation of gonadotropin hormone production were significantly downregulated. Corticotropes and thyrotropes were the least affected in HFD, while melanotropes exhibited reduced proportion. Lastly, we determined that changes in plasticity and gene expression were associated with changes in hormone levels. Serum prolactin was decreased corresponding to reduced lactotrope fraction, while lower luteinizing hormone and follicle-stimulating hormone in the serum corresponded to a decrease in transcription and translation. Taken together, our study highlights diet-mediated changes in pituitary gland populations and gene expression that play a role in altered hormone levels in obesity.


Subject(s)
Pituitary Gland, Anterior , Mice , Male , Animals , Pituitary Gland, Anterior/metabolism , Prolactin/metabolism , Pituitary Gland/metabolism , Follicle Stimulating Hormone/metabolism , Gene Expression Profiling , Obesity/genetics , Obesity/metabolism , Diet
6.
Cells ; 12(21)2023 11 04.
Article in English | MEDLINE | ID: mdl-37947653

ABSTRACT

Using constitutive GRF1/2 knockout mice, we showed previously that GRF2 is a key regulator of nuclear migration in retinal cone photoreceptors. To evaluate the functional relevance of that cellular process for two putative targets of the GEF activity of GRF2 (RAC1 and CDC42), here we compared the structural and functional retinal phenotypes resulting from conditional targeting of RAC1 or CDC42 in the cone photoreceptors of constitutive GRF2KO and GRF2WT mice. We observed that single RAC1 disruption did not cause any obvious morphological or physiological changes in the retinas of GRF2WT mice, and did not modify either the phenotypic alterations previously described in the retinal photoreceptor layer of GRF2KO mice. In contrast, the single ablation of CDC42 in the cone photoreceptors of GRF2WT mice resulted in clear alterations of nuclear movement that, unlike those of the GRF2KO retinas, were not accompanied by electrophysiological defects or slow, progressive cone cell degeneration. On the other hand, the concomitant disruption of GRF2 and CDC42 in the cone photoreceptors resulted, somewhat surprisingly, in a normalized pattern of nuclear positioning/movement, similar to that physiologically observed in GRF2WT mice, along with worsened patterns of electrophysiological responses and faster rates of cell death/disappearance than those previously recorded in single GRF2KO cone cells. Interestingly, the increased rates of cone cell apoptosis/death observed in single GRF2KO and double-knockout GRF2KO/CDC42KO retinas correlated with the electron microscopic detection of significant ultrastructural alterations (flattening) of their retinal ribbon synapses that were not otherwise observed at all in single-knockout CDC42KO retinas. Our observations identify GRF2 and CDC42 (but not RAC1) as key regulators of retinal processes controlling cone photoreceptor nuclear positioning and survival, and support the notion of GRF2 loss-of-function mutations as potential drivers of cone retinal dystrophies.


Subject(s)
Guanine Nucleotide-Releasing Factor 2 , Retinal Cone Photoreceptor Cells , Animals , Mice , Mice, Knockout , Retina , Retinal Cone Photoreceptor Cells/ultrastructure , Synapses/ultrastructure
7.
Discov Med ; 35(177): 553-564, 2023 08.
Article in English | MEDLINE | ID: mdl-37553309

ABSTRACT

PURPOSE: To evaluate the effects of various retinal neurotransmitters on temporal resolution, particularly, on the Critical Flicker Fusion Frequency (CFF), which has been previously applied in ophthalmic pathophysiologic research. METHODS: A binocular physiologic electroretinogram was performed on adult mice. Animals in the control group were injected in the right eye with 1 µL of phosphate-buffered saline (PBS). Animals in the experimental group were injected in the left eye with 1 µL of PBS and in the right eye with 1 µL of PBS to which different molecules were added: 2-amino-4-phosphonobutyric acid (APB), Glutamate, γ-aminobutyric acid (GABA), 6,7-dinitroquinoxaline-2,3-dione (DNQX), Bicuculline, Glycine, and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). Initially, rod response was recorded and later the cone response. RESULTS: APB suppressed the rod-driven, but not the cone-driven flicker response. The other agents severely affected the lower flickering frequency response amplitude, in particular, at 3 Hz. The threshold of CFF was lowered from 50 Hz to 40 Hz after applying APB, Glycine, and HEPES. GABA remarkably enhanced rod-driven and cone-driven flicker response at 3 Hz, whereas Glutamate and GABA/Glutamate only did in rod-driven flicker response. CONCLUSIONS: Both ON and OFF visual pathways were implied in cone-driven response, but only the ON visual pathway appears to play a relevant role in rod-driven flicker response. Flicker response seems to be enhanced by horizontal cells both in rod-driven and cone-driven response. In addition, due to the greater sensitivity of the flicker at low frequencies, it is suggested that pathophysiological studies should be carried out at said frequencies.


Subject(s)
Electroretinography , Visual Pathways , Mice , Animals , HEPES , Photic Stimulation , gamma-Aminobutyric Acid , Glutamates
8.
Antioxidants (Basel) ; 12(8)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37627589

ABSTRACT

Sodium iodate (NaIO3) has been shown to cause severe oxidative stress damage to retinal pigment epithelium cells. This results in the indirect death of photoreceptors, leading to a loss of visual capabilities. The aim of this work is the morphological and functional characterization of the retina and the visual pathway of an animal model of retinal neurodegeneration induced by oxidative stress. Following a single intraperitoneal dose of NaIO3 (65 mg/kg) to C57BL/6J mice with a mutation in the Opn4 gene (Opn4-/-), behavioral and electroretinographic tests were performed up to 42 days after administration, as well as retinal immunohistochemistry at day 57. A near total loss of the pupillary reflex was observed at 3 days, as well as an early deterioration of visual acuity. Behavioral tests showed a late loss of light sensitivity. Full-field electroretinogram recordings displayed a progressive and marked decrease in wave amplitude, disappearing completely at 14 days. A reduction in the amplitude of the visual evoked potentials was observed, but not their total disappearance. Immunohistochemistry showed structural alterations in the outer retinal layers. Our results show that NaIO3 causes severe structural and functional damage to the retina. Therefore, the current model can be presented as a powerful tool for the study of new therapies for the prevention or treatment of retinal pathologies mediated by oxidative stress.

9.
Sci Rep ; 13(1): 12666, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37542065

ABSTRACT

Mutations in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene are linked to Fragile X Syndrome, the most common monogenic cause of intellectual disability and autism. People affected with mutations in FMR1 have higher incidence of obesity, but the mechanisms are largely unknown. In the current study, we determined that male Fmr1 knockout mice (KO, Fmr1-/y), but not female Fmr1-/-, exhibit increased weight when compared to wild-type controls, similarly to humans with FMR1 mutations. No differences in food or water intake were found between groups; however, male Fmr1-/y display lower locomotor activity, especially during their active phase. Moreover, Fmr1-/y have olfactory dysfunction determined by buried food test, although they exhibit increased compulsive behavior, determined by marble burying test. Since olfactory brain regions communicate with hypothalamic regions that regulate food intake, including POMC neurons that also regulate locomotion, we examined POMC neuron innervation and numbers in Fmr1-/y mice. POMC neurons express Fmrp, and POMC neurons in Fmr1-/y have higher inhibitory GABAergic synaptic inputs. Consistent with increased inhibitory innervation, POMC neurons in the Fmr1-/y mice exhibit lower activity, based on cFOS expression. Notably, Fmr1-/y mice have fewer POMC neurons than controls, specifically in the rostral arcuate nucleus, which could contribute to decreased locomotion and increased body weight. These results suggest a role for Fmr1 in the regulation of POMC neuron function and the etiology of Fmr1-linked obesity.


Subject(s)
Fragile X Syndrome , Pro-Opiomelanocortin , Animals , Male , Mice , Body Weight , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/metabolism , Mice, Knockout , Mutation , Obesity/genetics , Pro-Opiomelanocortin/metabolism
10.
Elife ; 122023 05 10.
Article in English | MEDLINE | ID: mdl-37162190

ABSTRACT

Obesity incidence is increasing worldwide with the urgent need to identify new therapeutics. Sex differences in immune cell activation drive obesity-mediated pathologies where males are more susceptible to obesity comorbidities and exacerbated inflammation. Here, we demonstrate that the macrophage-secreted protein RELMα critically protects females against high-fat diet (HFD)-induced obesity. Compared to male mice, serum RELMα levels were higher in both control and HFD-fed females and correlated with frequency of adipose macrophages and eosinophils. RELMα-deficient females gained more weight and had proinflammatory macrophage accumulation and eosinophil loss in the adipose stromal vascular fraction (SVF), while RELMα treatment or eosinophil transfer rescued this phenotype. Single-cell RNA-sequencing of the adipose SVF was performed and identified sex and RELMα-dependent changes. Genes involved in oxygen sensing and iron homeostasis, including hemoglobin and lncRNA Gm47283/Gm21887, correlated with increased obesity, while eosinophil chemotaxis and response to amyloid-beta were protective. Monocyte-to-macrophage transition was also dysregulated in RELMα-deficient animals. Collectively, these studies implicate a RELMα-macrophage-eosinophil axis in sex-specific protection against obesity and uncover new therapeutic targets for obesity.


Subject(s)
Eosinophils , Sex Characteristics , Male , Female , Mice , Animals , Adipose Tissue/metabolism , Obesity/genetics , Macrophages/metabolism , Inflammation/pathology , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
11.
Front Endocrinol (Lausanne) ; 14: 1129534, 2023.
Article in English | MEDLINE | ID: mdl-36909303

ABSTRACT

Introduction: Mutations in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene cause Fragile X Syndrome, the most common monogenic cause of intellectual disability. Mutations of FMR1 are also associated with reproductive disorders, such as early cessation of reproductive function in females. While progress has been made in understanding the mechanisms of mental impairment, the causes of reproductive disorders are not clear. FMR1-associated reproductive disorders were studied exclusively from the endocrine perspective, while the FMR1 role in neurons that control reproduction was not addressed. Results: Here, we demonstrate that similar to women with FMR1 mutations, female Fmr1 null mice stop reproducing early. However, young null females display larger litters, more corpora lutea in the ovaries, increased inhibin, progesterone, testosterone, and gonadotropin hormones in the circulation. Ovariectomy reveals both hypothalamic and ovarian contribution to elevated gonadotropins. Altered mRNA and protein levels of several synaptic molecules in the hypothalamus are identified, indicating reasons for hypothalamic dysregulation. Increased vascularization of corpora lutea, higher sympathetic innervation of growing follicles in the ovaries of Fmr1 nulls, and higher numbers of synaptic GABAA receptors in GnRH neurons, which are excitatory for GnRH neurons, contribute to increased FSH and LH, respectively. Unmodified and ovariectomized Fmr1 nulls have increased LH pulse frequency, suggesting that Fmr1 nulls exhibit hyperactive GnRH neurons, regardless of the ovarian feedback. Conclusion: These results reveal Fmr1 function in the regulation of GnRH neuron secretion, and point to the role of GnRH neurons, in addition to the ovarian innervation, in the etiology of Fmr1-mediated reproductive disorders.


Subject(s)
Gonadotropin-Releasing Hormone , Ovary , Animals , Female , Mice , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Gonadotropin-Releasing Hormone/metabolism , Mutation , Neurons/metabolism , Ovary/metabolism
12.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36834538

ABSTRACT

To determine the origin of oscillatory potentials (OPs), binocular electroretinogram (ERG) recordings were performed under light and dark adaptation on adult healthy C57BL/6J mice. In the experimental group, 1 µL of PBS was injected into the left eye, while the right eye was injected with 1 µL of PBS containing different agents: APB, GABA, Bicuculline, TPMPA, Glutamate, DNQX, Glycine, Strychnine, or HEPES. The OP response depends on the type of photoreceptors involved, showing their maximum response amplitude in the ERG induced by mixed rod/cone stimulation. The oscillatory components of the OPs were affected by the injected agents, with some drugs inducing the complete abolition of oscillations (APB, GABA, Glutamate, or DNQX), whereas other drugs merely reduced the oscillatory amplitudes (Bicuculline, Glycine, Strychnine, or HEPES) or did not even affect the oscillations (TPMPA). Assuming that rod bipolar cells (RBC) express metabotropic Glutamate receptors, GABAA, GABAC, and Glycine receptors and that they release glutamate mainly on Glycinergic AII amacrine cells and GABAergic A17 amacrine cells, which are differently affected by the mentioned drugs, we propose that RBC-AII/A17 reciprocal synapses are responsible for the OP generation in the ERG recordings in the mice. We conclude that the reciprocal synapses between RBC and AII/A17 are the basis of the ERG OP oscillations of the light response, and this fact must be taken into consideration in any ERG test that shows a decrease in the OPs' amplitude.


Subject(s)
Retinal Diseases , Strychnine , Mice , Animals , Strychnine/pharmacology , Bicuculline , HEPES , Mice, Inbred C57BL , Retina , Glycine , gamma-Aminobutyric Acid , Glutamates
13.
Cells ; 12(3)2023 02 02.
Article in English | MEDLINE | ID: mdl-36766830

ABSTRACT

The short and long isoforms of FAIM (FAIM-S and FAIM-L) hold important functions in the central nervous system, and their expression levels are specifically enriched in the retina. We previously described that Faim knockout (KO) mice present structural and molecular alterations in the retina compatible with a neurodegenerative phenotype. Here, we aimed to study Faim KO retinal functions and molecular mechanisms leading to its alterations. Electroretinographic recordings showed that aged Faim KO mice present functional loss of rod photoreceptor and ganglion cells. Additionally, we found a significant delay in dark adaptation from early adult ages. This functional deficit is exacerbated by luminic stress, which also caused histopathological alterations. Interestingly, Faim KO mice present abnormal Arrestin-1 redistribution upon light reception, and we show that Arrestin-1 is ubiquitinated, a process that is abrogated by either FAIM-S or FAIM-L in vitro. Our results suggest that FAIM assists Arrestin-1 light-dependent translocation by a process that likely involves ubiquitination. In the absence of FAIM, this impairment could be the cause of dark adaptation delay and increased light sensitivity. Multiple retinal diseases are linked to deficits in photoresponse termination, and hence, investigating the role of FAIM could shed light onto the underlying mechanisms of their pathophysiology.


Subject(s)
Arrestin , Retina , Animals , Mice , Arrestin/metabolism , Dark Adaptation , Mice, Knockout , Retina/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Translocation, Genetic , Vision, Ocular
14.
bioRxiv ; 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36711654

ABSTRACT

Obesity incidence is increasing worldwide with the urgent need to identify new therapeutics. Sex differences in immune cell activation drive obesity-mediated pathologies where males are more susceptible to obesity co-morbidities and exacerbated inflammation. Here, we demonstrate that the macrophage-secreted protein RELMα critically protects females against high fat diet-induced obesity. Compared to male mice, RELMα levels were elevated in both control and high fat dietfed females and correlated with adipose macrophages and eosinophils. RELMα-deficient females gained more weight and had pro-inflammatory macrophage accumulation and eosinophil loss, while both RELMα treatment and eosinophil transfer rescued this phenotype. Single cell RNA-sequencing of the adipose stromal vascular fraction was performed and identified sex and RELMα-dependent changes. Genes involved in oxygen sensing and iron homeostasis, including hemoglobin and lncRNA Gm47283, correlated with increased obesity, while eosinophil chemotaxis and response to amyloid-beta were protective. Monocyte-to-macrophage transition was also dysregulated in RELMα-deficient animals. Collectively, these studies implicate a RELMα-macrophage-eosinophil axis in sex-specific protection against obesity and uncover new therapeutic targets for obesity.

15.
Autophagy ; 19(3): 784-804, 2023 03.
Article in English | MEDLINE | ID: mdl-35875981

ABSTRACT

Macroautophagy/autophagy is a key process in the maintenance of cellular homeostasis. The age-dependent decline in retinal autophagy has been associated with photoreceptor degeneration. Retinal dysfunction can also result from damage to the retinal pigment epithelium (RPE), as the RPE-retina constitutes an important metabolic ecosystem that must be finely tuned to preserve visual function. While studies of mice lacking essential autophagy genes have revealed a predisposition to retinal degeneration, the consequences of a moderate reduction in autophagy, similar to that which occurs during physiological aging, remain unclear. Here, we described a retinal phenotype consistent with accelerated aging in mice carrying a haploinsufficiency for Ambra1, a pro-autophagic gene. These mice showed protein aggregation in the retina and RPE, metabolic underperformance, and premature vision loss. Moreover, Ambra1+/gt mice were more prone to retinal degeneration after RPE stress. These findings indicate that autophagy provides crucial support to RPE-retinal metabolism and protects the retina against stress and physiological aging.Abbreviations : 4-HNE: 4-hydroxynonenal; AMBRA1: autophagy and beclin 1 regulator 1, AMD: age-related macular degeneration;; GCL: ganglion cell layer; GFAP: glial fibrillary acidic protein; GLUL: glutamine synthetase/glutamate-ammonia ligase; HCL: hierarchical clustering; INL: inner nuclear layer; IPL: inner plexiform layer; LC/GC-MS: liquid chromatography/gas chromatography-mass spectrometry; MA: middle-aged; MTDR: MitoTracker Deep Red; MFI: mean fluorescence intensity; NL: NH4Cl and leupeptin; Nqo: NAD(P)H quinone dehydrogenase; ONL: outer nuclear layer; OPL: outer plexiform layer; OP: oscillatory potentials; OXPHOS: oxidative phosphorylation; PCR: polymerase chain reaction; PRKC/PKCα: protein kinase C; POS: photoreceptor outer segment; RGC: retinal ganglion cells; RPE: retinal pigment epithelium; SI: sodium iodate; TCA: tricarboxylic acid.


Subject(s)
Retinal Degeneration , Mice , Animals , Retinal Degeneration/genetics , Ecosystem , Haploinsufficiency , Autophagy/genetics , Retina/metabolism , Retinal Pigment Epithelium/metabolism , Adaptor Proteins, Signal Transducing/metabolism
16.
Front Cell Dev Biol ; 11: 1328261, 2023.
Article in English | MEDLINE | ID: mdl-38188022

ABSTRACT

In the last decades, mesenchymal stem cells (MSCs) have become the cornerstone of cellular therapy due to their unique characteristics. Specifically human placenta-derived mesenchymal stem cells (hPMSCs) are highlighted for their unique features, including ease to isolate, non-invasive techniques for large scale cell production, significant immunomodulatory capacity, and a high ability to migrate to injuries. Researchers are exploring innovative techniques to overcome the low regenerative capacity of Central Nervous System (CNS) neurons, with one promising avenue being the development of tailored mesenchymal stem cell therapies capable of promoting neural repair and recovery. In this context, we have evaluated hPMSCs as candidates for CNS lesion regeneration using a skillful co-culture model system. Indeed, we have demonstrated the hPMSCs ability to stimulate damaged rat-retina neurons regeneration by promoting axon growth and restoring neuronal activity both under normoxia and hypoxia conditions. With our model we have obtained neuronal regeneration values of 10%-14% and axonal length per neuron rates of 19-26, µm/neuron. To assess whether the regenerative capabilities of hPMSCs are contact-dependent effects or it is mediated through paracrine mechanisms, we carried out transwell co-culture and conditioned medium experiments confirming the role of secreted factors in axonal regeneration. It was found that hPMSCs produce brain derived, neurotrophic factor (BDNF), nerve-growth factor (NGF) and Neurotrophin-3 (NT-3), involved in the process of neuronal regeneration and restoration of the physiological activity of neurons. In effect, we confirmed the success of our treatment using the patch clamp technique to study ionic currents in individual isolated living cells demonstrating that in our model the regenerated neurons are electrophysiologically active, firing action potentials. The outcomes of our neuronal regeneration studies, combined with the axon-regenerating capabilities exhibited by mesenchymal stem cells derived from the placenta, present a hopeful outlook for the potential therapeutic application of hPMSCs in the treatment of neurological disorders.

17.
Front Neuroanat ; 16: 1054849, 2022.
Article in English | MEDLINE | ID: mdl-36530520

ABSTRACT

Purpose: To identify and characterize numerically and topographically the population of alpha retinal ganglion cells (αRGCs) and their subtypes, the sustained-response ON-center αRGCs (ONs-αRGCs), which correspond to the type 4 intrinsically photosensitive RGCs (M4-ipRGCs), the transient-response ON-center αRGCs (ONt-αRGCs), the sustained-response OFF-center αRGCs (OFFs-αRGCs), and the transient-response OFF-center αRGCs (OFFt-αRGCs) in the adult pigmented mouse retina. Methods: The αRGC population and its subtypes were studied in flat-mounted retinas and radial sections immunodetected against non-phosphorylated high molecular weight neurofilament subunit (SMI-32) or osteopontin (OPN), two αRGCs pan-markers; Calbindin, expressed in ONs-αRGCs, and amacrines; T-box transcription factor T-brain 2 (Tbr2), a key transcriptional regulator for ipRGC development and maintenance, expressed in ipRGCs and GABA-displaced amacrine cells; OPN4, an anti-melanopsin antibody; or Brn3a and Brn3c, markers of RGCs. The total population of RGCs was counted automatically and αRGCs and its subtypes were counted manually, and color-coded neighborhood maps were used for their topographical representation. Results: The total mean number of αRGCs per retina is 2,252 ± 306 SMI32+αRGCs and 2,315 ± 175 OPN+αRGCs (n = 10), representing 5.08% and 5.22% of the total number of RGCs traced from the optic nerve, respectively. αRGCs are distributed throughout the retina, showing a higher density in the temporal hemiretina. ONs-αRGCs represent ≈36% [841 ± 110 cells (n = 10)] of all αRGCs and are located throughout the retina, with the highest density in the temporal region. ONt-αRGCs represent ≈34% [797 ± 146 cells (n = 10)] of all αRGCs and are mainly located in the central retinal region. OFF-αRGCs represent the remaining 32% of total αRGCs and are divided equally between OFFs-αRGCs and OFFt-αRGCs [363 ± 50 cells (n = 10) and 376 ± 36 cells (n = 10), respectively]. OFFs-αRGCs are mainly located in the supero-temporal peripheral region of the retina and OFFt-αRGCs in the mid-peripheral region of the retina, especially in the infero-temporal region. Conclusions: The combination of specific antibodies is a useful tool to identify and study αRGCs and their subtypes. αRGCs are distributed throughout the retina presenting higher density in the temporal area. The sustained ON and OFF response subtypes are mainly located in the periphery while the transient ON and OFF response subtypes are found in the central regions of the retina.

18.
Int J Mol Sci ; 23(15)2022 Jul 24.
Article in English | MEDLINE | ID: mdl-35897728

ABSTRACT

Recent technological development requires new approaches to address the problem of blindness. Such approaches need to be able to ensure that no cells with photosensitive capability remain in the retina. The presented model, Opn4-/- × Pde6brd10/rd10 (O×Rd) double mutant murine, is a combination of a mutation in the Pde6b gene (photoreceptor degeneration) together with a deletion of the Opn4 gene (responsible for the expression of melanopsin in the intrinsically photosensitive retinal ganglion cells). This model has been characterized and compared with those of WT mice and murine animal models displaying both mutations separately. A total loss of pupillary reflex was observed. Likewise, behavioral tests demonstrated loss of rejection to illuminated spaces and a complete decrease in visual acuity (optomotor test). Functional recordings showed an absolute disappearance of various wave components of the full-field and pattern electroretinogram (fERG, pERG). Likewise, visual evoked potential (VEP) could not be recorded. Immunohistochemical staining showed marked degeneration of the outer retinal layers and the absence of melanopsin staining. The combination of both mutations has generated an animal model that does not show any photosensitive element in its retina. This model is a potential tool for the study of new ophthalmological approaches such as optosensitive agents.


Subject(s)
Evoked Potentials, Visual , Retinal Degeneration , Animals , Blindness , Evoked Potentials, Visual/genetics , Mice , Mice, Inbred C57BL , Models, Genetic , Phenotype , Retina/metabolism , Retinal Degeneration/metabolism
19.
Nat Commun ; 13(1): 4220, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35864098

ABSTRACT

Chaperone-mediated autophagy activity, essential in the cellular defense against proteotoxicity, declines with age, and preventing this decline in experimental genetic models has proven beneficial. Here, we have identified the mechanism of action of selective chaperone-mediated autophagy activators previously developed by our group and have leveraged that information to generate orally bioavailable chaperone-mediated autophagy activators with favorable brain exposure. Chaperone-mediated autophagy activating molecules stabilize the interaction between retinoic acid receptor alpha - a known endogenous inhibitor of chaperone-mediated autophagy - and its co-repressor, nuclear receptor corepressor 1, resulting in changes of a discrete subset of the retinoic acid receptor alpha transcriptional program that leads to selective chaperone-mediated autophagy activation. Chaperone-mediated autophagy activators molecules activate this pathway in vivo and ameliorate retinal degeneration in a retinitis pigmentosa mouse model. Our findings reveal a mechanism for pharmacological targeting of chaperone-mediated autophagy activation and suggest a therapeutic strategy for retinal degeneration.


Subject(s)
Chaperone-Mediated Autophagy , Retinal Degeneration , Retinitis Pigmentosa , Animals , Autophagy , Co-Repressor Proteins , Mice , Retinoic Acid Receptor alpha/genetics
20.
J Environ Manage ; 318: 115588, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35779299

ABSTRACT

Second-growth forests (SGF) are critical components for limiting biodiversity loss and climate change mitigation. However, these forests were established after anthropic disturbances such as land use for planting, and in highly human-modified landscapes. These interventions can decrease the ability of biological communities to recover naturally, and it is necessary to understand how multiple drivers, from local scale to landscape scale influence the diversity and carbon stock of these forests in natural regeneration. For this, we used data from 37 SGF growing on areas previously used for eucalyptus plantations in the Brazilian Atlantic Forest, after the last cut cycle. For each SGF, the forest tree species diversity was calculated based on the Hills number, and we also calculated the above-ground carbon stock. Then, we evaluated the influence of multiple environmental factors on these indexes: soil properties, past-management intensity, patch configuration, and landscape composition. Little influence of soil properties was found, only soil fertility negatively influenced above-ground carbon stock. However, past-management intensity negatively influenced tree species diversity and carbon stock. The isolation of other forests and tree species propagules source distance (>500 ha) also negatively influenced the diversity of species. This is probably due to the favoring of tree pioneer species in highly human-modified landscapes because they are more tolerant of environmental changes, less dependent on animal dispersal, and have low carbon stock capacity. Thus, areas with higher past-management intensity and more isolated areas are less effective for passive restoration and may require intervention to recover tree diversity and carbon stock in the Atlantic Forest. The approach, which had not yet been applied in the Atlantic Forest, brought similar results to that found in other forests, and serves as a theoretical basis for choosing priority areas for passive restoration in the biome.


Subject(s)
Carbon , Trees , Animals , Biodiversity , Ecosystem , Forests , Humans , Soil , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...