Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Transfus Apher Sci ; 61(2): 103413, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35288057

ABSTRACT

Platelets are the blood cells in charge of maintaining the body hemostasis, recognising the damaged vessel wall, and providing the appropriate cellular surface for the coagulation cascade to act locally. Additionally, platelets are active immunomodulators. At the crossroads of hemostasis and inflammation, platelets may exert either beneficial actions or participate in pathological manifestations, and have been associated with the prothrombotic nature of multi-organ failure in systemic inflammation. Platelet number alterations have been reported in septis, and platelet transfusions are given to thrombocytopenic patients. However, the risk to develop transfusion related acute lung injury (TRALI) is higher in sepsis patients. In this manuscript we show that platelets produced during inflammation in preclinical mouse models of sterile inflammation display lower aggregation capacity when stimulating certain receptors, while responses through other receptors remain intact, and we name them "inflammation-conditioned" platelets. In a cohort of sepsis patients, we observed, as previously reported, alterations in the number of platelets and platelet hyperreactivity. Furthermore, we identified a receptor-wise platelet aggregation response disbalance in these patients, although not similar to platelets from preclinical models of sterile inflammation. Interestingly, we generated evidence supporting the notion that platelet aggregation capacity disbalance was partially triggered by plasma components from sepsis patients. Our findings have implications in the indication of platelet transfusions in sepsis patients: Are fully functional platelets suitable for transfusion in sepsis patients? Current Clinical Trials (RESCUE) will answer whether platelet production stimulation with thrombopoietin receptor agonists (TPO-RAs) could be a substitute of platelet transfusions.


Subject(s)
Platelet Transfusion , Sepsis , Animals , Blood Platelets , Humans , Inflammation/therapy , Mice , Platelet Count , Sepsis/pathology , Sepsis/therapy
2.
Platelets ; 30(3): 368-379, 2019.
Article in English | MEDLINE | ID: mdl-29553857

ABSTRACT

Platelet concentrates (PCs) represent a blood transfusion product with a major concern for safety as their storage temperature (20-24°C) allows bacterial growth, and their maximum storage time period (less than a week) precludes complete microbiological testing. Pathogen inactivation technologies (PITs) provide an additional layer of safety to the blood transfusion products from known and unknown pathogens such as bacteria, viruses, and parasites. In this context, PITs, such as Mirasol Pathogen Reduction Technology (PRT), have been developed and are implemented in many countries. However, several studies have shown in vitro that Mirasol PRT induces a certain level of platelet shape change, hyperactivation, basal degranulation, and increased oxidative damage during storage. It has been suggested that Mirasol PRT might accelerate what has been described as the platelet storage lesion (PSL), but supportive molecular signatures have not been obtained. We aimed at dissecting the influence of both variables, that is, Mirasol PRT and storage time, at the proteome level. We present comprehensive proteomics data analysis of Control PCs and PCs treated with Mirasol PRT at storage days 1, 2, 6, and 8. Our workflow was set to perform proteomics analysis using a gel-free and label-free quantification (LFQ) approach. Semi-quantification was based on LFQ signal intensities of identified proteins using MaxQuant/Perseus software platform. Data are available via ProteomeXchange with identifier PXD008119. We identified marginal differences between Mirasol PRT and Control PCs during storage. However, those significant changes at the proteome level were specifically related to the functional aspects previously described to affect platelets upon Mirasol PRT. In addition, the effect of Mirasol PRT on the platelet proteome appeared not to be exclusively due to an accelerated or enhanced PSL. In summary, semi-quantitative proteomics allows to discern between proteome changes due to Mirasol PRT or PSL, and proves to be a methodology suitable to phenotype platelets in an unbiased manner, in various physiological contexts.


Subject(s)
Blood Platelets/metabolism , Platelet Function Tests/methods , Proteome/metabolism , Proteomics/methods , Humans
3.
Transfus Apher Sci ; 56(5): 756-768, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28970003

ABSTRACT

Hemato-oncologic patients with chemotherapy-induced thrombocytopenia are one of the populations receiving platelet transfusions. The general practice with these patients is to give prophylactic platelet transfusions when platelet counts fall below 10×109PLT/L. However, in more than 40% of these patients, platelet transfusion does not prevent bleeding. The reason of the low efficacy of platelet transfusion in the context of chemotherapy patients is not entirely understood. We therefore aimed at immunophenotyping the expression of platelet surface and activation markers and thrombopoietin levels from hemato-oncologic patients before and after transfusion. A more detailed follow-up was performed in three patients that underwent autologous bone marrow transplantation. As previously reported, basal platelet activation was observed in hemato-oncologic patients. Based on flow cytometry parameters, i.e. the percentage of positivity and mean fluorescence intensity (MFI) distribution, our data provide an additional interpretation of platelet acquired qualitative changes in the hemato-oncologic patient. From our results we propose: first, the underlying activation of platelets in the hemato-oncologic patient is accompanied by loss of expression of the platelet receptors that are susceptible to protease-mediated shedding; second, soon after transfusion, the newly circulating donor platelets show additional activation, which may result in subsequent platelet receptor recycling and potential accelerated clearance of these activated platelets. In conclusion, the immunophenotype of circulating platelets changes after prophylactic platelet transfusion. Next to platelet count increment, exploration of this immunophenotype might help to explain transfusion refractory bleeding in hemato-oncologic patients. Eventually this may lead to personalization and improvement of the present platelet transfusion support regime.


Subject(s)
Bone Marrow Transplantation/methods , Hematologic Diseases/therapy , Platelet Transfusion/methods , Thrombopoietin/blood , Female , Flow Cytometry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...