Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 586(7828): 287-291, 2020 10.
Article in English | MEDLINE | ID: mdl-32728214

ABSTRACT

All metazoans depend on the consumption of O2 by the mitochondrial oxidative phosphorylation system (OXPHOS) to produce energy. In addition, the OXPHOS uses O2 to produce reactive oxygen species that can drive cell adaptations1-4, a phenomenon that occurs in hypoxia4-8 and whose precise mechanism remains unknown. Ca2+ is the best known ion that acts as a second messenger9, yet the role ascribed to Na+ is to serve as a mere mediator of membrane potential10. Here we show that Na+ acts as a second messenger that regulates OXPHOS function and the production of reactive oxygen species by modulating the fluidity of the inner mitochondrial membrane. A conformational shift in mitochondrial complex I during acute hypoxia11 drives acidification of the matrix and the release of free Ca2+ from calcium phosphate (CaP) precipitates. The concomitant activation of the mitochondrial Na+/Ca2+ exchanger promotes the import of Na+ into the matrix. Na+ interacts with phospholipids, reducing inner mitochondrial membrane fluidity and the mobility of free ubiquinone between complex II and complex III, but not inside supercomplexes. As a consequence, superoxide is produced at complex III. The inhibition of Na+ import through the Na+/Ca2+ exchanger is sufficient to block this pathway, preventing adaptation to hypoxia. These results reveal that Na+ controls OXPHOS function and redox signalling through an unexpected interaction with phospholipids, with profound consequences for cellular metabolism.


Subject(s)
Electron Transport , Hypoxia/metabolism , Mitochondria/metabolism , Second Messenger Systems , Sodium/metabolism , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Calcium Phosphates/metabolism , Cell Line, Tumor , Chemical Precipitation , Humans , Male , Membrane Fluidity , Mice, Inbred C57BL , Mitochondrial Membranes/chemistry , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Oxidative Phosphorylation , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Sodium-Calcium Exchanger/metabolism
2.
Free Radic Biol Med ; 71: 146-156, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24637263

ABSTRACT

Oxygen is a key molecule for cell metabolism. Eukaryotic cells sense the reduction in oxygen availability (hypoxia) and trigger a series of cellular and systemic responses to adapt to hypoxia, including the optimization of oxygen consumption. Many of these responses are mediated by a genetic program induced by the hypoxia-inducible transcription factors (HIFs), regulated by a family of prolyl hydroxylases (PHD or EGLN) that use oxygen as a substrate producing HIF hydroxylation. In parallel to these oxygen sensors modulating gene expression within hours, acute modulation of protein function in response to hypoxia is known to occur within minutes. Free radicals acting as second messengers, and oxidative posttranslational modifications, have been implied in both groups of responses. Localization and speciation of the paradoxical increase in reactive oxygen species production in hypoxia remain debatable. We have observed that several cell types respond to acute hypoxia with a transient increase in superoxide production for about 10 min, probably originating in the mitochondria. This may explain in part the apparently divergent results found by various groups that have not taken into account the time frame of hypoxic ROS production. We propose that this acute and transient hypoxia-induced superoxide burst may be translated into oxidative signals contributing to hypoxic adaptation and preconditioning.


Subject(s)
Endothelial Cells/drug effects , Mitochondria/drug effects , Oxygen/pharmacology , Respiratory Burst , Animals , Cattle , Cell Hypoxia , Endothelial Cells/cytology , Endothelial Cells/metabolism , HeLa Cells , Humans , Hydroxylation , Mitochondria/metabolism , Oxidation-Reduction , Oxidative Phosphorylation , Oxygen Consumption , Signal Transduction , Superoxides/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...