Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38717911

ABSTRACT

CONTEXT: The pituitary gland is key for childhood growth, puberty, and metabolism. Pituitary dysfunction is associated with a spectrum of phenotypes, from mild to severe. Congenital Hypopituitarism (CH) is the most commonly reported pediatric endocrine dysfunction with an incidence of 1:4000, yet low rates of genetic diagnosis have been reported. OBJECTIVE: We aimed to unveil the genetic etiology of CH in a large cohort of patients from Argentina. METHODS: We performed whole exome sequencing of 137 unrelated cases of CH, the largest cohort examined with this method to date. RESULTS: Of the 137 cases, 19.1% and 16% carried pathogenic or likely pathogenic variants in known and new genes, respectively, while 28.2% carried variants of uncertain significance. This high yield was achieved through the integration of broad gene panels (genes described in animal models and/or other disorders), an unbiased candidate gene screen with a new bioinformatics pipeline (including genes high loss of function intolerance), and analysis of copy number variants. Three novel findings emerged. First, the most prevalent affected gene encodes the cell adhesion factor ROBO1. Affected children had a spectrum of phenotypes, consistent with a role beyond pituitary stalk interruption syndrome. Second, we found that CHD7 mutations also produce a phenotypic spectrum, not always associated with full CHARGE syndrome. Third, we add new evidence of pathogenicity in the genes PIBF1 and TBC1D32, and report 13 novel candidate genes associated with CH (e.g. PTPN6, ARID5B). CONCLUSION: Overall, these results provide an unprecedented insight into the diverse genetic etiology of hypopituitarism.

2.
bioRxiv ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38559194

ABSTRACT

In placental females, one copy of the two X chromosomes is largely silenced during a narrow developmental time window, in a process mediated by the non-coding RNA Xist1. Here, we demonstrate that Xist can initiate X-chromosome inactivation (XCI) well beyond early embryogenesis. By modifying its endogenous level, we show that Xist has the capacity to actively silence genes that escape XCI both in neuronal progenitor cells (NPCs) and in vivo, in mouse embryos. We also show that Xist plays a direct role in eliminating TAD-like structures associated with clusters of escapee genes on the inactive X chromosome, and that this is dependent on Xist's XCI initiation partner, SPEN2. We further demonstrate that Xist's function in suppressing gene expression of escapees and topological domain formation is reversible for up to seven days post-induction, but that sustained Xist up-regulation leads to progressively irreversible silencing and CpG island DNA methylation of facultative escapees. Thus, the distinctive transcriptional and regulatory topologies of the silenced X chromosome is actively, directly - and reversibly - controlled by Xist RNA throughout life.

3.
Cell Genom ; 3(4): 100281, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37082141

ABSTRACT

Cancer genomes harbor a broad spectrum of structural variants (SVs) driving tumorigenesis, a relevant subset of which escape discovery using short-read sequencing. We employed Oxford Nanopore Technologies (ONT) long-read sequencing in a paired diagnostic and post-therapy medulloblastoma to unravel the haplotype-resolved somatic genetic and epigenetic landscape. We assembled complex rearrangements, including a 1.55-Mbp chromothripsis event, and we uncover a complex SV pattern termed templated insertion (TI) thread, characterized by short (mostly <1 kb) insertions showing prevalent self-concatenation into highly amplified structures of up to 50 kbp in size. TI threads occur in 3% of cancers, with a prevalence up to 74% in liposarcoma, and frequent colocalization with chromothripsis. We also perform long-read-based methylome profiling and discover allele-specific methylation (ASM) effects, complex rearrangements exhibiting differential methylation, and differential promoter methylation in cancer-driver genes. Our study shows the advantage of long-read sequencing in the discovery and characterization of complex somatic rearrangements.

4.
J Vis Exp ; (188)2022 10 14.
Article in English | MEDLINE | ID: mdl-36314814

ABSTRACT

The spatial organization of the genome contributes to its function and regulation in many contexts, including transcription, replication, recombination, and repair. Understanding the exact causality between genome topology and function is therefore crucial and increasingly the subject of intensive research. Chromosome conformation capture technologies (3C) allow inferring the 3D structure of chromatin by measuring the frequency of interactions between any region of the genome. Here we describe a fast and simple protocol to perform Capture Hi-C, a 3C-based target enrichment method that characterizes the allele-specific 3D organization of megabased-sized genomic targets at high-resolution. In Capture Hi-C, target regions are captured by an array of biotinylated probes before downstream high-throughput sequencing. Thus, higher resolution and allele-specificity are achieved while improving the time-effectiveness and affordability of the technology. To demonstrate its strengths, the Capture Hi-C protocol was applied to the mouse X-inactivation center (Xic), the master regulatory locus of X-chromosome inactivation (XCI).


Subject(s)
Chromatin , Chromosomes , Mice , Animals , Chromosome Mapping/methods , Chromatin/genetics , High-Throughput Nucleotide Sequencing/methods , Genomics/methods
5.
EMBO Rep ; 22(5): e51415, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33786993

ABSTRACT

The tumour suppressors RNF43 and ZNRF3 play a central role in development and tissue homeostasis by promoting the turnover of the Wnt receptors LRP6 and Frizzled (FZD). The stem cell growth factor R-spondin induces auto-ubiquitination and membrane clearance of ZNRF3/RNF43 to promote Wnt signalling. However, the deubiquitinase stabilising ZNRF3/RNF43 at the plasma membrane remains unknown. Here, we show that the USP42 antagonises R-spondin by protecting ZNRF3/RNF43 from ubiquitin-dependent clearance. USP42 binds to the Dishevelled interacting region (DIR) of ZNRF3 and stalls the R-spondin-LGR4-ZNRF3 ternary complex by deubiquitinating ZNRF3. Accordingly, USP42 increases the turnover of LRP6 and Frizzled (FZD) receptors and inhibits Wnt signalling. Furthermore, we show that USP42 functions as a roadblock for paracrine Wnt signalling in colon cancer cells and mouse small intestinal organoids. We provide new mechanistic insights into the regulation R-spondin and conclude that USP42 is crucial for ZNRF3/RNF43 stabilisation at the cell surface.


Subject(s)
Thrombospondins , Ubiquitin-Protein Ligases , Animals , Mice , Receptors, G-Protein-Coupled/genetics , Thrombospondins/genetics , Thrombospondins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Wnt Signaling Pathway
6.
Mol Cell ; 81(2): 255-267.e6, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33290745

ABSTRACT

Gene activation requires the cooperative activity of multiple transcription factors at cis-regulatory elements (CREs). Yet, most transcription factors have short residence time, questioning the requirement of their physical co-occupancy on DNA to achieve cooperativity. Here, we present a DNA footprinting method that detects individual molecular interactions of transcription factors and nucleosomes with DNA in vivo. We apply this strategy to quantify the simultaneous binding of multiple transcription factors on single DNA molecules at mouse CREs. Analysis of the binary occupancy patterns at thousands of motif combinations reveals that high DNA co-occupancy occurs for most types of transcription factors, in the absence of direct physical interaction, at sites of competition with nucleosomes. Perturbation of pairwise interactions demonstrates the function of molecular co-occupancy in binding cooperativity. Our results reveal the interactions regulating CREs at molecular resolution and identify DNA co-occupancy as a widespread cooperativity mechanism used by transcription factors to remodel chromatin.


Subject(s)
DNA Footprinting/methods , DNA/genetics , Nucleosomes/chemistry , Regulatory Elements, Transcriptional , Transcription Factors/genetics , Animals , Binding Sites , DNA/chemistry , DNA/metabolism , Male , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Nucleosomes/metabolism , Protein Binding , Transcription Factors/chemistry , Transcription Factors/metabolism , Transcription, Genetic
7.
Cell Rep ; 32(3): 107930, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32697992

ABSTRACT

RNA-binding proteins (RBPs) commonly feature multiple RNA-binding domains (RBDs), which provide these proteins with a modular architecture. Accumulating evidence supports that RBP architectural modularity and adaptability define the specificity of their interactions with RNA. However, how multiple RBDs recognize their cognate single-stranded RNA (ssRNA) sequences in concert remains poorly understood. Here, we use Upstream of N-Ras (Unr) as a model system to address this question. Although reported to contain five ssRNA-binding cold-shock domains (CSDs), we demonstrate that Unr includes an additional four CSDs that do not bind RNA (pseudo-RBDs) but are involved in mediating RNA tertiary structure specificity by reducing the conformational heterogeneity of Unr. Disrupting the interactions between canonical and non-canonical CSDs impacts RNA binding, Unr-mediated translation regulation, and the Unr-dependent RNA interactome. Taken together, our studies reveal a new paradigm in protein-RNA recognition, where interactions between RBDs and pseudo-RBDs select RNA tertiary structures, influence RNP assembly, and define target specificity.


Subject(s)
DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Nucleic Acid Conformation , RNA/chemistry , RNA/metabolism , Amino Acid Sequence , Animals , Drosophila melanogaster , Protein Biosynthesis , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...