Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurochem ; 165(1): 76-94, 2023 04.
Article in English | MEDLINE | ID: mdl-36583241

ABSTRACT

Ceruloplasmin (Cp) is a multicopper oxidase with ferroxidase properties being of importance to the mobilisation and export of iron from cells and its ability to bind copper. In ageing humans, Cp deficiency is known to result in aceruloplasminemia, which among other is characterised by neurological symptoms. To obtain novel information about the functions of Cp in the central nervous system (CNS) we compared the brain proteome in forebrains from asymptomatic 4-6-month-old Cp-deficient (B6N(Cg)-Cptm1b(KOMP)Wtsi /J) and wild-type mice. Of more than 5600 quantified proteins, 23 proteins, were regulated, whereas more than 1200 proteins had regulated post-translational modifications (PTMs). The genes of the regulated proteins, glycoproteins and phosphoproteins appeared mostly to be located to neurons and oligodendrocyte precursor cells. Cp deficiency especially affected the function of proteins involved in the extension of neuronal projections, synaptic signalling and cellular mRNA processing and affected the expression of proteins involved in neurodegenerative disease and diabetes. Iron concentration and transferrin saturation were reduced in the blood of even younger, 3- to 5-month-old, Cp-deficient mice. Iron act as cofactor in many enzymatic processes and reactions. Changes in iron availability and oxidation as consequence of Cp deficiency could therefore affect the synthesis of proteins and lipids. This proteomic characterisation is to our knowledge the first to document the changes taking place in the CNS-proteome and its phosphorylation and glycosylation state in Cp-deficient mice.


Subject(s)
Ceruloplasmin , Neurodegenerative Diseases , Animals , Humans , Mice , Ceruloplasmin/genetics , Ceruloplasmin/metabolism , Iron/metabolism , Neurodegenerative Diseases/metabolism , Protein Processing, Post-Translational , Proteome/metabolism , Proteomics , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism
2.
Front Cell Neurosci ; 13: 308, 2019.
Article in English | MEDLINE | ID: mdl-31417357

ABSTRACT

Insulin-like growth factor-1 (IGF-1) is a pleiotropic molecule with neurotrophic and immunomodulatory functions. Knowing the capacity of chronically activated microglia to produce IGF-1 may therefore show essential to promote beneficial microglial functions in Alzheimer's disease (AD). Here, we investigated the expression of IGF-1 mRNA and IGF-1 along with the expression of tumor necrosis factor (TNF) mRNA, and the amyloid-ß (Aß) plaque load in the hippocampus of 3- to 24-month-old APPswe/PS1ΔE9 transgenic (Tg) and wild-type (WT) mice. As IGF-1, in particular, is implicated in neurogenesis we also monitored the proliferation of cells in the subgranular zone (sgz) of the dentate gyrus. We found that the Aß plaque load reached its maximum in aged 21- and 24-month-old APPswe/PS1ΔE9 Tg mice, and that microglial reactivity and hippocampal IGF-1 and TNF mRNA levels were significantly elevated in aged APPswe/PS1ΔE9 Tg mice. The sgz cell proliferation decreased with age, regardless of genotype and increased IGF-1/TNF mRNA levels. Interestingly, IGF-1 mRNA was expressed in subsets of sgz cells, likely neuroblasts, and neurons in both genotypes, regardless of age, as well as in glial-like cells. By double in situ hybridization these were shown to be IGF1 mRNA+ CD11b mRNA+ cells, i.e., IGF-1 mRNA-expressing microglia. Quantification showed a 2-fold increase in the number of microglia and IGF-1 mRNA-expressing microglia in the molecular layer of the dentate gyrus in aged APPswe/PS1ΔE9 Tg mice. Double-immunofluorescence showed that IGF-1 was expressed in a subset of Aß plaque-associated CD11b+ microglia and in several subsets of neurons. Exposure of primary murine microglia and BV2 cells to Aß42 did not affect IGF-1 mRNA expression. IGF-1 mRNA levels remained constant in WT mice with aging, unlike TNF mRNA levels which increased with aging. In conclusion, our results suggest that the increased IGF-1 mRNA levels can be ascribed to a larger number of IGF-1 mRNA-expressing microglia in the aged APPswe/PS1ΔE9 Tg mice. The finding that subsets of microglia retain the capacity to express IGF-1 mRNA and IGF-1 in the aged APPswe/PS1ΔE9 Tg mice is encouraging, considering the beneficial therapeutic potential of modulating microglial production of IGF-1 in AD.

3.
Brain Behav Immun ; 48: 86-101, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25774009

ABSTRACT

Beta-amyloid (Aß) plaques and chronic neuroinflammation are significant neuropathological features of Alzheimer's disease. Microglial cells in aged brains have potential to produce cytokines such as TNF and IL-1 family members (IL-1α, IL-1ß, and IL-1Ra) and to phagocytose Aß in Alzheimer's disease, however the inter-relationship between these processes is poorly understood. Here we show that % Aß plaque load followed a sigmoidal trajectory with age in the neocortex of APPswe/PS1ΔE9 Tg mice, and correlated positively with soluble Aß40 and Aß42. Aß measures were moderately correlated with mRNA levels of CD11b, TNF, and IL-1Ra. Cytokine production and Aß load were assessed in neocortical CD11b(+)(CD45(+)) microglia by flow cytometry. Whereas most microglia in aged mice produced IL-1Ra, relatively low proportions of microglia produced TNF, IL-1α, and IL-1ß. However, microglial production of these latter cytokines was generally increased in APP/PS1 Tg mice. Microglia that phagocytosed endogenously-produced Aß were only observed in APP/PS1 Tg mice. Differences in phagocytic index and total Aß load were observed in microglia with specific cytokine profiles. Both phagocytic index and total Aß load were higher in IL-1α(+) and IL-1Ra(+) microglia, than microglia that did not produce these cytokines. In contrast, total Aß load was lower in IL-1ß(+) and TNF(+) microglia, compared to IL-1ß(-) and TNF(-) microglia, and TNF(+) microglia also had a lower phagocytic index. Using GFP bone marrow chimeric mice, we confirmed that the majority of neocortical CD11b(+)(CD45(+)) microglia were resident cells (GFP(-)) in APP/PS1 Tg mice, even after selectively analysing CD11b(+)CD45(high) cells, which are typically considered to be infiltrating cells. Together, our data demonstrate that cytokine expression is selectively correlated with age and Aß pathology, and is associated with an altered Aß load in phagocytic microglia from APP/PS1 Tg mice. These findings have implications for understanding the regulation of microglial cytokine production and phagocytosis of Aß in Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides/metabolism , Brain/metabolism , Cytokines/metabolism , Microglia/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Mice , Mice, Transgenic , Presenilin-1/genetics , Presenilin-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...