Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol Rep ; 15(2): 92-108, 2023 04.
Article in English | MEDLINE | ID: mdl-36192831

ABSTRACT

The study of microbialites development is a key tool to understand environmental pathways during deposition. We provide a detailed analysis of modern Central Andean microbialites from high-altitude lakes. The stratigraphic record of Turquesa Lake shows a significant short-term recolonization by microbialite-producing microorganisms during environmental stress. Far from a crisis paradigm, the coasts and paleocoasts of Turquesa lake exhibit three microbialitic buildups formed along different stages, providing a good study case of biological resilience of these systems in harsh environments. The MI and MII microbialite buildups occupied two paleocoasts. Both are composed of oncoids with micritic to microsparitic textures. Morphological, textural and mineralogical similarities between the two buildups suggest that they were formed at different times, but under very similar environmental conditions. The microorganisms that produced the microbialitic buildup MIII are currently colonizing the coast of this lake. The previous oncoid morphology change to a parallel micritic-spartic lamination. This remarkable changes in the microstructure can be explained by an important environmental change caused by the isolation of the Peinado Lake, and a subsequently microorganism adaptation. This microbialite structures can be proposed as an interesting modern analogue for environmental changes along the geological record.


Subject(s)
Altitude , Geologic Sediments , Geologic Sediments/chemistry , Lakes/chemistry
2.
Microb Ecol ; 83(1): 1-17, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33730193

ABSTRACT

The wetlands and salt flats of the Central Andes region are unique extreme environments as they are located in high-altitude saline deserts, largely influenced by volcanic activity. Environmental factors, such as ultraviolet (UV) radiation, arsenic content, high salinity, low dissolved oxygen content, extreme daily temperature fluctuation, and oligotrophic conditions, resemble the early Earth and potentially extraterrestrial conditions. The discovery of modern microbialites and microbial mats in the Central Andes during the past decade has increased the interest in this area as an early Earth analog. In this work, we review the current state of knowledge of Central Andes region environments found within lakes, small ponds or puquios, and salt flats of Argentina, Chile, and Bolivia, many of them harboring a diverse range of microbial communities that we have termed Andean Microbial Ecosystems (AMEs). We have integrated the data recovered from all the known AMEs and compared their biogeochemistry and microbial diversity to achieve a better understanding of them and, consequently, facilitate their protection.


Subject(s)
Microbiota , Wetlands , Geologic Sediments/chemistry , Lakes/chemistry , Salinity
SELECTION OF CITATIONS
SEARCH DETAIL
...