Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 20(2): 274-284, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31872200

ABSTRACT

Myocardial infarction and heart failure are leading causes of death worldwide, in large part because adult human myocardium has extremely limited regeneration capacity. Zebrafish are a powerful model for identifying new strategies for human cardiac repair because their hearts regenerate after relatively severe injuries. Zebrafish are also relatively scalable and compatible with many genetic tools. However, characterizing the regeneration process in live adult zebrafish hearts has proved challenging because adult fish are opaque, preventing live imaging in vivo. An alternative strategy is to explant and culture intact adult zebrafish hearts and investigate them ex vivo. However, explanted hearts maintained in conventional culture conditions experience rapid declines in morphology and physiology. To overcome these limitations, we designed and fabricated a fluidic device for culturing explanted adult zebrafish hearts with constant media perfusion that is also compatible with live imaging. We then compared the morphology and calcium activity of hearts cultured in the device, hearts cultured statically in dishes, and freshly explanted hearts. After one week of culture, hearts in the device experienced significantly less morphological degradation compared to hearts cultured in dishes. Hearts cultured in devices for one week also maintained capture rates similar to fresh hearts, unlike hearts cultured in dishes. We then cultured explanted injured hearts in the device and used live imaging techniques to continuously record the myocardial revascularization process over several days, demonstrating how our device is compatible with long-term live imaging and thereby enables unprecedented visual access to the multi-day process of adult zebrafish heart regeneration.


Subject(s)
Heart/diagnostic imaging , Lab-On-A-Chip Devices , Tissue Culture Techniques , Animals , Zebrafish
2.
Elife ; 82019 11 08.
Article in English | MEDLINE | ID: mdl-31702553

ABSTRACT

The cardiac lymphatic vascular system and its potentially critical functions in heart patients have been largely underappreciated, in part due to a lack of experimentally accessible systems. We here demonstrate that cardiac lymphatic vessels develop in young adult zebrafish, using coronary arteries to guide their expansion down the ventricle. Mechanistically, we show that in cxcr4a mutants with defective coronary artery development, cardiac lymphatic vessels fail to expand onto the ventricle. In regenerating adult zebrafish hearts the lymphatic vasculature undergoes extensive lymphangiogenesis in response to a cryoinjury. A significant defect in reducing the scar size after cryoinjury is observed in zebrafish with impaired Vegfc/Vegfr3 signaling that fail to develop intact cardiac lymphatic vessels. These results suggest that the cardiac lymphatic system can influence the regenerative potential of the myocardium.


Subject(s)
Heart/physiology , Lymphangiogenesis/physiology , Lymphatic Vessels/physiopathology , Myocardium/metabolism , Zebrafish/physiology , Animals , Animals, Genetically Modified , Coronary Vessels/metabolism , Coronary Vessels/physiology , Gene Expression Regulation, Developmental , Heart/growth & development , Humans , Lymphangiogenesis/genetics , Lymphatic Vessels/injuries , Lymphatic Vessels/metabolism , Mutation , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Regeneration/genetics , Regeneration/physiology , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor Receptor-3/genetics , Vascular Endothelial Growth Factor Receptor-3/metabolism , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...