Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Can J Neurol Sci ; 49(3): 315-337, 2022 05.
Article in English | MEDLINE | ID: mdl-34140063

ABSTRACT

The 2020 update of the Canadian Stroke Best Practice Recommendations (CSBPR) for the Secondary Prevention of Stroke includes current evidence-based recommendations and expert opinions intended for use by clinicians across a broad range of settings. They provide guidance for the prevention of ischemic stroke recurrence through the identification and management of modifiable vascular risk factors. Recommendations address triage, diagnostic testing, lifestyle behaviors, vaping, hypertension, hyperlipidemia, diabetes, atrial fibrillation, other cardiac conditions, antiplatelet and anticoagulant therapies, and carotid and vertebral artery disease. This update of the previous 2017 guideline contains several new or revised recommendations. Recommendations regarding triage and initial assessment of acute transient ischemic attack (TIA) and minor stroke have been simplified, and selected aspects of the etiological stroke workup are revised. Updated treatment recommendations based on new evidence have been made for dual antiplatelet therapy for TIA and minor stroke; anticoagulant therapy for atrial fibrillation; embolic strokes of undetermined source; low-density lipoprotein lowering; hypertriglyceridemia; diabetes treatment; and patent foramen ovale management. A new section has been added to provide practical guidance regarding temporary interruption of antithrombotic therapy for surgical procedures. Cancer-associated ischemic stroke is addressed. A section on virtual care delivery of secondary stroke prevention services in included to highlight a shifting paradigm of care delivery made more urgent by the global pandemic. In addition, where appropriate, sex differences as they pertain to treatments have been addressed. The CSBPR include supporting materials such as implementation resources to facilitate the adoption of evidence into practice and performance measures to enable monitoring of uptake and effectiveness of recommendations.


Subject(s)
Atrial Fibrillation , Ischemic Attack, Transient , Ischemic Stroke , Stroke , Anticoagulants/therapeutic use , Canada/epidemiology , Female , Humans , Ischemic Attack, Transient/complications , Ischemic Attack, Transient/prevention & control , Male , Secondary Prevention , Stroke/etiology , Stroke/prevention & control
3.
Trials ; 20(1): 313, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31151483

ABSTRACT

BACKGROUND: Successful stroke trials require adequate recruitment. In this observational study, we assessed reasons for refusal to provide informed consent in eligible patients approached for clinical trial participation at the Vancouver Stroke Program. METHODS: We assessed screening logs from four trials that were actively recruiting at our center: three randomized trials, two of which investigated different antithrombotic strategies for secondary prevention (NAVIGATE-ESUS, NCT02313909 12/2014; DATAS-II, NCT02295826 11/2014) and one that investigated surgery plus medical management versus medical management alone for primary prevention (CREST-2, NCT02089217 03/2014). The fourth study was observational and non-randomized; all participants received an external monitoring device (PROPHECY, NCT03712865 10/2018). Screening logs from June 2015 to April 2017 were reviewed retrospectively. Subsequently, we used a prospective structured case report form for screening (May 2017-March 2018). We assessed and compared refusal rates between trials, demographics of those refusing consent, and their reasons for doing so. We used descriptive statistics, chi-square and Fisher's exact tests as appropriate for non-parametric data, and t-tests for parametric data. We examined likelihood of refusal by sex using multivariable logistic regression models including age and trial intervention as co-variables. RESULTS: A total of 235 patients (43% women) were approached for consent. More patients refused the surgical (59%) and antithrombotic trials (53%) compared with the non-randomized external monitoring device study (13%) (p < 0.001). Surgical trial refusals were primarily due to a desire for certainty in receiving a particular intervention (39%), with the majority of those patients wanting surgery. Refusals for the antithrombotic trials were mainly due to concerns with the potential side effects of the study drug (41%); refusals in the device trial were mainly due to disinterest (46%). Women refused participation more often than men (48% vs 33%). Women remained less likely to consent than men, even after adjustment for age and trial intervention (OR 0.46, 95% CI 0.26-0.82, p = 0.009). CONCLUSIONS: Concern surrounding drug safety, randomization, and disinterest were the chief deterrents to enrolment; there were also differences in rates of consent by gender. A better understanding of why patients refuse participation in stroke trials may help to develop future patient-directed communication strategies to improve enrolment. Further research is required to better understand the reasons underlying gender disparities in consent rates.


Subject(s)
Clinical Trials as Topic , Refusal to Participate/statistics & numerical data , Stroke/therapy , Aged , Aged, 80 and over , Female , Humans , Logistic Models , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...