Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 15: 1340749, 2024.
Article in English | MEDLINE | ID: mdl-38765265

ABSTRACT

Aim: We aimed to describe the neurosonological findings related to cerebral hemodynamics acquired using transcranial Doppler and to determine the frequency of elevated ICP by optic nerve sheath diameter (ONSD) measurement in patients with severe coronavirus disease (COVID-19) hospitalized in the intensive care unit of a national referral hospital in Peru. Methods: We included a retrospective cohort of adult patients hospitalized with severe COVID-19 and acute respiratory failure within the first 7 days of mechanical ventilation under deep sedoanalgesia, with or without neuromuscular blockade who underwent ocular ultrasound and transcranial Doppler. We determine the frequency of elevated ICP by measuring the diameter of the optic nerve sheath, choosing as best cut-off value a diameter equal to or >5.8 mm. We also determine the frequency of sonographic patterns obtained by transcranial Doppler. Through insonation of the middle cerebral artery. Likewise, we evaluated the associations of clinical, mechanical ventilator, and arterial blood gas variables with ONSD ≥5.8 mm and pulsatility index (PI) ≥1.1. We also evaluated the associations of hemodynamic findings and ONSD with mortality the effect size was estimated using Poisson regression models with robust variance. Results: This study included 142 patients. The mean age was 51.39 ± 13.3 years, and 78.9% of patients were male. Vasopressors were used in 45.1% of patients, and mean arterial pressure was 81.87 ± 10.64 mmHg. The mean partial pressure of carbon dioxide (PaCO2) was elevated (54.08 ± 16.01 mmHg). Elevated intracranial pressure was seen in 83.1% of patients, as estimated based on ONSD ≥5.8 mm. A mortality rate of 16.2% was reported. In the multivariate analysis, age was associated with elevated ONSD (risk ratio [RR] = 1.07). PaCO2 was a protective factor (RR = 0.64) in the cases of PI ≥ 1.1. In the mortality analysis, the mean velocity was a risk factor for mortality (RR = 1.15). Conclusions: A high rate of intracranial hypertension was reported, with ONSD measurement being the most reliable method for estimation. The increase in ICP measured by ONSD in patients with severe COVID-19 on mechanical ventilation is not associated to hypercapnia or elevated intrathoracic pressures derived from protective mechanical ventilation.

2.
Respir Care ; 68(12): 1683-1692, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37402585

ABSTRACT

BACKGROUND: In ARDS caused by COVID-19 pneumonia, appropriate adjustment of physiologic parameters based on lung stretch or oxygenation may optimize the ventilatory strategy. This study aims to describe the prognostic performance on 60-d mortality of single and composite respiratory variables in subjects with COVID-19 ARDS who are on mechanical ventilation with a lung-protective strategy, including the oxygenation stretch index combining oxygenation and driving pressure (ΔP). METHODS: This single-center observational cohort study enrolled 166 subjects on mechanical ventilation and diagnosed with COVID-19 ARDS. We evaluated their clinical and physiologic characteristics. The primary study outcome was 60-d mortality. Prognostic factors were evaluated through receiver operating characteristic analysis, Cox proportional hazards regression model, and Kaplan-Meier survival curves. RESULTS: Mortality at day 60 was 18.1%, and hospital mortality was 22.9%. Oxygenation, ΔP, and composite variables were tested: oxygenation stretch index ([Formula: see text]/[Formula: see text] divided by ΔP) and ΔP × 4 + breathing frequency (f) (ΔP × 4 + f). At both day 1 and day 2 after inclusion, the oxygenation stretch index had the best area under the receiver operating characteristic curve (oxygenation stretch index on day 1 0.76 (95% CI 0.67-0.84) and on day 2 0.83 (95% CI 0.76-0.91) to predict 60-d mortality, although without significant difference from other indexes. In multivariable Cox regression, ΔP, [Formula: see text]/[Formula: see text], ΔP × 4 + f, and oxygenation stretch index were all associated with 60-d mortality. When dichotomizing the variables, ΔP ≥ 14, [Formula: see text]/[Formula: see text] ≤ 152 mm Hg, ΔP × 4 + f ≥ 80, and oxygenation stretch index < 7.7 showed lower 60-d survival probability. At day 2, after optimization of ventilatory settings, the subjects who persisted with the worse cutoff values for the oxygenation stretch index showed a lower probability of survival at 60 d compared with day 1; this was not the case for other parameters. CONCLUSIONS: The oxygenation stretch index, which combines [Formula: see text]/[Formula: see text] and ΔP, is associated with mortality and may be useful to predict clinical outcomes in COVID-19 ARDS.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Respiration, Artificial , Respiratory Distress Syndrome/therapy , COVID-19/complications , Lung , Respiration
3.
Ann Intensive Care ; 12(1): 13, 2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35150355

ABSTRACT

BACKGROUND: A sequential change in body position from supine-to-both lateral positions under constant ventilatory settings could be used as a postural recruitment maneuver in case of acute respiratory distress syndrome (ARDS), provided that sufficient positive end-expiratory pressure (PEEP) prevents derecruitment. This study aims to evaluate the feasibility and physiological effects of a sequential postural recruitment maneuver in early mechanically ventilated COVID-19 ARDS patients. METHODS: A cohort of 15 patients receiving lung-protective mechanical ventilation in volume-controlled with PEEP based on recruitability were prospectively enrolled and evaluated in five sequentially applied positions for 30 min each: Supine-baseline; Lateral-1st side; 2nd Supine; Lateral-2nd side; Supine-final. PEEP level was selected using the recruitment-to-inflation ratio (R/I ratio) based on which patients received PEEP 12 cmH2O for R/I ratio ≤ 0.5 or PEEP 15 cmH2O for R/I ratio > 0.5. At the end of each period, we measured respiratory mechanics, arterial blood gases, lung ultrasound aeration, end-expiratory lung impedance (EELI), and regional distribution of ventilation and perfusion using electric impedance tomography (EIT). RESULTS: Comparing supine baseline and final, respiratory compliance (29 ± 9 vs 32 ± 8 mL/cmH2O; p < 0.01) and PaO2/FIO2 ratio (138 ± 36 vs 164 ± 46 mmHg; p < 0.01) increased, while driving pressure (13 ± 2 vs 11 ± 2 cmH2O; p < 0.01) and lung ultrasound consolidation score decreased [5 (4-5) vs 2 (1-4); p < 0.01]. EELI decreased ventrally (218 ± 205 mL; p < 0.01) and increased dorsally (192 ± 475 mL; p = 0.02), while regional compliance increased in both ventral (11.5 ± 0.7 vs 12.9 ± 0.8 mL/cmH2O; p < 0.01) and dorsal regions (17.1 ± 1.8 vs 18.8 ± 1.8 mL/cmH2O; p < 0.01). Dorsal distribution of perfusion increased (64.8 ± 7.3% vs 66.3 ± 7.2%; p = 0.01). CONCLUSIONS: Without increasing airway pressure, a sequential postural recruitment maneuver improves global and regional respiratory mechanics and gas exchange along with a redistribution of EELI from ventral to dorsal lung areas and less consolidation. Trial registration ClinicalTrials.gov, NCT04475068. Registered 17 July 2020, https://clinicaltrials.gov/ct2/show/NCT04475068.

SELECTION OF CITATIONS
SEARCH DETAIL
...