Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Rapid Commun ; 36(21): 1884-1890, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26147073

ABSTRACT

Tissue scaffolds allowing the behavior of the cells that reside within them to be controlled are of particular interest for tissue engineering. Herein, the preparation of conductive fiber-based bone tissue scaffolds (nonwoven mats of electrospun polycaprolactone with an interpenetrating network of polypyrrole and polystyrenesulfonate) is described that enable the electrical stimulation of human mesenchymal stem cells to enhance their differentiation toward osteogenic outcomes.

2.
Macromol Biosci ; 15(11): 1490-6, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26033953

ABSTRACT

Stimuli-responsive materials enabling the behavior of the cells that reside within them to be controlled are vital for the development of instructive tissue scaffolds for tissue engineering. Herein, we describe the preparation of conductive silk foam-based bone tissue scaffolds that enable the electrical stimulation of human mesenchymal stem cells (HMSCs) to enhance their differentiation toward osteogenic outcomes.


Subject(s)
Bone Substitutes/chemistry , Cell Differentiation , Mesenchymal Stem Cells/metabolism , Osteogenesis , Silk/chemistry , Tissue Scaffolds/chemistry , Humans , Mesenchymal Stem Cells/cytology
3.
Macromol Rapid Commun ; 36(21): 1936, 2015 Nov.
Article in English | MEDLINE | ID: mdl-29971874

ABSTRACT

Back Cover: Tissue scaffolds allowing the behavior of the cells that reside within them to be controlled are of particular interest for tissue engineering. Herein, the preparation of conductive nanofiber-based bone tissue scaffolds are described, made from nonwoven mats of electrospun polycaprolactone with an interpenetrating network of polypyrrole and polystyrenesulfonate. These scaffolds enable the electrical stimulation of human mesenchymal stem cells to enhance their differentiation toward osteogenic outcomes. Further details can be found in the article by J. G. Hardy,* M. K. Villancio-Wolter, R. C. Sukhavasi, D. J. Mouser, D. Aguilar Jr., S. A. Geissler, D. L. Kaplan,* and C. E. Schmidt* on page 1884.

4.
J Mater Chem B ; 3(41): 8059-8064, 2015 Nov 07.
Article in English | MEDLINE | ID: mdl-32262862

ABSTRACT

Tissue scaffolds allowing the behaviour of the cells that reside on them to be controlled are of particular interest for tissue engineering. Herein we describe biomineralized conducting polymer-based bone tissue scaffolds that facilitate the electrical stimulation of human mesenchymal stem cells, resulting in enhancement of their differentiation towards osteogenic outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...