Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 9(4)2024 02 22.
Article in English | MEDLINE | ID: mdl-38385744

ABSTRACT

Crohn's disease (CD) is a chronic inflammatory gut disorder. Molecular mechanisms underlying the clinical heterogeneity of CD remain poorly understood. MicroRNAs (miRNAs) are important regulators of gut physiology, and several have been implicated in the pathogenesis of adult CD. However, there is a dearth of large-scale miRNA studies for pediatric CD. We hypothesized that specific miRNAs uniquely mark pediatric CD. We performed small RNA-Seq of patient-matched colon and ileum biopsies from treatment-naive pediatric patients with CD (n = 169) and a control cohort (n = 108). Comprehensive miRNA analysis revealed 58 miRNAs altered in pediatric CD. Notably, multinomial logistic regression analysis revealed that index levels of ileal miR-29 are strongly predictive of severe inflammation and stricturing. Transcriptomic analyses of transgenic mice overexpressing miR-29 show a significant reduction of the tight junction protein gene Pmp22 and classic Paneth cell markers. The dramatic loss of Paneth cells was confirmed by histologic assays. Moreover, we found that pediatric patients with CD with elevated miR-29 exhibit significantly lower Paneth cell counts, increased inflammation scores, and reduced levels of PMP22. These findings strongly indicate that miR-29 upregulation is a distinguishing feature of pediatric CD, highly predictive of severe phenotypes, and associated with inflammation and Paneth cell loss.


Subject(s)
Crohn Disease , MicroRNAs , Adult , Animals , Mice , Humans , Child , Crohn Disease/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Phenotype , Inflammation
2.
BMC Genomics ; 24(1): 641, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37884859

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are important post-transcriptional gene regulators controlling cellular lineage specification and differentiation during embryonic development, including the gastrointestinal system. However, miRNA-mediated regulatory mechanisms involved in early embryonic development of human small intestine (SI) remains underexplored. To explore candidate roles for miRNAs in prenatal SI lineage specification in humans, we used a multi-omic analysis strategy in a directed differentiation model that programs human pluripotent stem cells toward the SI lineage. RESULTS: We leveraged small RNA-seq to define the changing miRNA landscape, and integrated chromatin run-on sequencing (ChRO-seq) and RNA-seq to define genes subject to significant post-transcriptional regulation across the different stages of differentiation. Small RNA-seq profiling revealed temporal dynamics of miRNA signatures across different developmental events of the model, including definitive endoderm formation, SI lineage specification and SI regional patterning. Our multi-omic, integrative analyses showed further that the elevation of miR-182 and reduction of miR-375 are key events during SI lineage specification. We demonstrated that loss of miR-182 leads to an increase in the foregut master marker SOX2. We also used single-cell analyses in murine adult intestinal crypts to support a life-long role for miR-375 in the regulation of Zfp36l2. Finally, we uncovered opposing roles of SMAD4 and WNT signaling in regulating miR-375 expression during SI lineage specification. Beyond the mechanisms highlighted in this study, we also present a web-based application for exploration of post-transcriptional regulation and miRNA-mediated control in the context of early human SI development. CONCLUSION: The present study uncovers a novel facet of miRNAs in regulating prenatal SI development. We leveraged multi-omic, systems biology approaches to discover candidate miRNA regulators associated with early SI developmental events in a human organoid model. In this study, we highlighted miRNA-mediated post-transcriptional regulation relevant to the event of SI lineage specification. The candidate miRNA regulators that we identified for the other stages of SI development also warrant detailed characterization in the future.


Subject(s)
Gene Expression Regulation, Developmental , MicroRNAs , Humans , Animals , Mice , Cell Differentiation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Intestine, Small/metabolism , Organoids/metabolism
3.
BMC Genomics ; 23(1): 792, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36457077

ABSTRACT

Somatic mutations drive colorectal cancer (CRC) by disrupting gene regulatory mechanisms. Distinct combinations of mutations can result in unique changes to regulatory mechanisms leading to variability in the efficacy of therapeutics. MicroRNAs are important regulators of gene expression, and their activity can be altered by oncogenic mutations. However, it is unknown how distinct combinations of CRC-risk mutations differentially affect microRNAs. Here, using genetically-modified mouse intestinal organoid (enteroid) models, we identify 12 different modules of microRNA expression patterns across different combinations of mutations common in CRC. We also show that miR-24-3p is aberrantly upregulated in genetically-modified mouse enteroids irrespective of mutational context. Furthermore, we identify an enrichment of miR-24-3p predicted targets in downregulated gene lists from various mutational contexts compared to WT. In follow-up experiments, we demonstrate that miR-24-3p promotes CRC cell survival in multiple cell contexts. Our novel characterization of genotype-specific patterns of miRNA expression offer insight into the mechanisms that drive inter-tumor heterogeneity and highlight candidate microRNA therapeutic targets for the advancement of precision medicine for CRC.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Animals , Mice , Cell Survival/genetics , Colorectal Neoplasms/genetics , Genotype , MicroRNAs/genetics , Organoids
4.
Cancer Res ; 82(14): 2610-2624, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35294525

ABSTRACT

CD70 is highly expressed in renal cell carcinoma (RCC), with limited expression in normal tissue, making it an attractive CAR T target for an immunogenic solid tumor indication. Here we generated and characterized a panel of anti-CD70 single-chain fragment variable (scFv)-based CAR T cells. Despite the expression of CD70 on T cells, production of CAR T cells from a subset of scFvs with potent in vitro activity was achieved. Expression of CD70 CARs masked CD70 detection in cis and provided protection from CD70 CAR T cell-mediated fratricide. Two distinct classes of CAR T cells were identified with differing memory phenotype, activation status, and cytotoxic activity. Epitope mapping revealed that the two classes of CARs bind unique regions of CD70. CD70 CAR T cells displayed robust antitumor activity against RCC cell lines and patient-derived xenograft mouse models. Tissue cross-reactivity studies identified membrane staining in lymphocytes, thus matching the known expression pattern of CD70. In a cynomolgus monkey CD3-CD70 bispecific toxicity study, expected findings related to T-cell activation and elimination of CD70-expressing cells were observed, including cytokine release and loss of cellularity in lymphoid tissues. Finally, highly functional CD70 allogeneic CAR T cells were produced at large scale through elimination of the T-cell receptor by TALEN-based gene editing. Taken together, these efficacy and safety data support the evaluation of CD70 CAR T cells for the treatment of RCC and has led to the advancement of an allogeneic CD70 CAR T-cell candidate into phase I clinical trials. SIGNIFICANCE: These findings demonstrate the efficacy and safety of fratricide-resistant, allogeneic anti-CD70 CAR T cells targeting renal cell carcinoma and the impact of CAR epitope on functional activity. See related commentary by Adotévi and Galaine, p. 2517.


Subject(s)
Carcinoma, Renal Cell , Hematopoietic Stem Cell Transplantation , Kidney Neoplasms , Animals , CD27 Ligand , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Humans , Immunotherapy, Adoptive , Kidney Neoplasms/pathology , Macaca fascicularis , Mice , T-Lymphocytes/metabolism , Xenograft Model Antitumor Assays
5.
Methods Mol Biol ; 2048: 259-264, 2019.
Article in English | MEDLINE | ID: mdl-31396943

ABSTRACT

For scientists working within the field of induced pluripotent stem cells (iPSCs), this protocol will provide a thorough walk-through on how to conduct in vitro and in vivo experiments that validate the function of a particular safeguard system technology. In short, we provide instructions on how to generate inducible Caspase-9 (iC9) safeguard system with human iPSCs that act as normal or abnormal models of the cells for therapeutics to be tried after differentiation. These iC9-iPSCs should be modified prior to beginning this protocol by constitutively expressing luciferase, an enzyme capable of generating bioluminescent signals through the oxidation of the substrate luciferin. Monitoring the bioluminescent signal over time provides the information on whether a safeguard system is working or not.


Subject(s)
Genes, Transgenic, Suicide , Intravital Microscopy/methods , Luminescent Measurements/methods , Teratoma/diagnostic imaging , Animals , Benzothiazoles/administration & dosage , Benzothiazoles/chemistry , Caspase 9/genetics , Caspase 9/metabolism , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cell Differentiation , Cell Line , Culture Media/metabolism , Disease Models, Animal , Gene Expression/drug effects , Genes, Reporter/drug effects , Genes, Reporter/genetics , Humans , Immunotherapy/adverse effects , Immunotherapy/methods , Induced Pluripotent Stem Cells/metabolism , Injections, Intraperitoneal , Intravital Microscopy/instrumentation , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Luminescent Measurements/instrumentation , Mice, Inbred NOD , Mice, SCID , Tacrolimus/administration & dosage , Tacrolimus/analogs & derivatives , Teratoma/immunology , Teratoma/pathology , Teratoma/therapy , Tumor Burden
6.
J Gastrointest Oncol ; 9(5): 778-784, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30505575

ABSTRACT

BACKGROUND: Prior reports have demonstrated inferior outcomes for patients with right-sided colorectal cancer (CRC) compared to patients with left-sided disease, as well as differences in treatment response based on disease sidedness. Differences in prognosis remain even among patients with metastatic disease, indicating that anatomy or stage at diagnosis alone cannot explain all of these findings. While genetic differences between right- and left-sided CRC have long been described, the genetic and molecular drivers underlying differences in prognosis and treatment response remain incompletely understood. METHODS: We compared mutation prevalence between right- (cecum to splenic flexure) and left-sided (descending colon to rectum) CRC among 38 genes in a retrospective review of next-generation sequencing data of CRC samples obtained in routine clinical practice at a single academic medical center. RESULTS: Among 288 cases (167 left-sided, 103 right-sided, 18 synchronous or without clear primary), patients with left-sided primaries had a longer overall survival from pathologic diagnosis (median 1,823 days vs. 1,006 days for right-sided cases, P=0.004). Among the assessed genes, BRAF and CTNNB1 mutations were more prevalent in right-sided CRC. BRAF was mutated in 15.5% of right-sided CRC (95% CI: 8.5-22.5%) compared to 4.8% (95% CI: 1.6-8.0%) (P=0.003). CTNNB1 was mutated in 3.9% of right-sided CRC (95% CI: 0.2-7.6%) compared to no instances of CTNNB1 mutations in left-sided disease (P=0.01). CONCLUSIONS: This difference in mutation prevalence may implicate these genetic pathways in the mechanisms underlying the discrepant outcomes and treatment responses between right- and left-sided CRC described in this and prior studies.

7.
J Integr Bioinform ; 13(5): 307, 2016 Dec 22.
Article in English | MEDLINE | ID: mdl-28187421

ABSTRACT

Small non-coding RNAs, in particular microRNAs, are critical for normal physiology and are candidate biomarkers, regulators, and therapeutic targets for a wide variety of diseases. There is an ever-growing interest in the comprehensive and accurate annotation of microRNAs across diverse cell types, conditions, species, and disease states. Highthroughput sequencing technology has emerged as the method of choice for profiling microRNAs. Specialized bioinformatic strategies are required to mine as much meaningful information as possible from the sequencing data to provide a comprehensive view of the microRNA landscape. Here we present miRquant 2.0, an expanded bioinformatics tool for accurate annotation and quantification of microRNAs and their isoforms (termed isomiRs) from small RNA-sequencing data. We anticipate that miRquant 2.0 will be useful for researchers interested not only in quantifying known microRNAs but also mining the rich well of additional information embedded in small RNA-sequencing data.


Subject(s)
Databases, Genetic , MicroRNAs/genetics , Molecular Sequence Annotation , Sequence Analysis, RNA/methods , Software , MicroRNAs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...